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Motivation I: Metastatic spreading

Metastases: a major cause of death in cancer

m Metastatic state of the patient is often difficult to evaluate, as

micro-tumors are hardly detectable from imagery.

Questions

m Can we design a new “in silico” metastatic index?

m Can we infer the metastatic aggressivity from biomarkers?
Mathematic tools

m McKendrick-Von Foerster equation for a simple emission

m Growth-fragmentation equation for general emission




Motivation II: Microtubules

Microtubules: a therapeutic target in oncology
m MTs play a crucial role in cell division, in cell migration
~ MTs are a favorite target of Microtubule Targeting Agents
(MTASs), successfully used as antimitotic more recently as
antiangiogenic agent or antimigratory agent in cancer treatments.
m MTs are polymers highly dynamic.

Questions
m Can we model the effect of MTAs on the MT dynamical
instabilities?
m Can we better understand the low dose effect of MTAs?
Mathematical tools
m Complex models using Growth-fragmentation equations




McKendrick-Von Foerster vs growth-fragmentation eq.

McKendrick-Von Foerster equation
% + & (9(x)p) = ~D(@)p(t,z), t > 0,2 >0
p(t,0) = [~ By) p(t,y) dy, t >0
p(0,z) = po(x), z >0

Typically, p is the density of a population structured by the age x and
g is the growth rate in x, B is the birth rate and D the death rate. In
the case where x is the age a, (g(a) = 1), the equation is also called
the renewal equation.

Growth-fragmentation equation
3+ & g(@)p) = =B(@)p(t,2) + [y~ Bly)k(z,y)p(t.y)dy, t >0, 2 >0
p(t,0)=0,¢t>0
p(O,l’) = pO(x)) z>0

Typically, p is the density of a cell population structured by its size x
and B is the division rate and k(x,y) is the probability that the
division of a cell of size y leads to a cell of size x.




Outline

Some classical biological contexts

m McKendrick-Von Foerster equations
= Population structured by age
= Mitosis - structuration by age
= Metastases - single cell emission

m Growth-fragmentation equations
= Mitosis - structuration by size
= Metastases - emission by cluster
= MTs dynamical instabilities

Theorical issues

m The McKendrick-Von Foerster equation
= Model for a population structured by age
= Model for mitosis - structuration by age
= Model of metastases - single cell emission

m Growth-fragmention equation
= Model for Mitosis - structuration by size
= Model of metastases - emission by cluster
= MTs dynamical instabilities




Some classical biological contexts




Population structured by age

Death neglected

p(t+dt,a+dt) p(t+dt,a+ da+ dt)
——————— Timet+tdt

2] 9p _
G+ =0,t>0,a>0

(*) p(t’ 0) = f()oo B(y) p(t7 y) dya t > 0 (’(’v’tl) n(l.,u,\ da) Limet
p<07 a) = PO(G); a>0 ‘l::;f’”*ﬂ”/)(,+[,f_“,]’,n,j [ ot
da p(t + dt,a + dt) ~ da p(t, a)

13
dadt (Dep(t,a) + dup(t,a)) ~ 0

m p(t,a) density at time ¢ with an age a
m B(a) is the birth rate




Population structured by age

Perthame, Transport equation in Biology

plt+dt,a+dt)  p(t+dt.a+ da+dt)

with a death term
Ei 407,4 Time ¢ + dt

Death
—dt da D(a)p(t,a)

% 4 9% — _D(a)p(t,a), t>0,a>0 S, 7
R
JECA et dtay o = [ !~ D)ot ds

p(0,a) = po(a), a >0
Y
dap(t + dt,a+ dt) ~ dap(t,a) — dadt D(a)p(s, a)
+

dadt (Dup(t,a) + duplt,a)) ~ —dadt D(a)p(s. a)

m p(t,a) density at time ¢ with an age a
m B(a) is the birth rate

m D(a) is the death rate




Mitosis - structuration by age

Population of cells structured by age that divide at a rate B giving 2
cells of age 0.

plt+dt,a+dt)  p(t+dt,a+ da+ dt)
%§ + gg = —B(a)p(t,a),t >0,a>0 /u\
()8 P(,0) = 2 [} Bly) pltsy) dy ¢ > 0
p(0,a) = po(a), a >0

m p(t,a) density at time ¢ with an age a

Time t + dt

- Time ¢
p(t,a) p(t.a+da)

m B(a) is the division rate




Metastases - single cell emission

The original model of metastases Iwata & al (2000)

ot + dt, ) plt+ dt, @+ d)
—————————————=+— Tempst+dt

Ttz

SO plt 4 dy) dy = [T p(ty) dy

ln pap /\ T~z tdtg(z), 7+ do ~ o+ do + dt g(z + dz)
o v © p(ﬁ{l‘) Pty ’+ dz) ot
m p(t,z) density of metastases at time ¢ of size x.
A transport equation for the growth of metastases
Op(t,z) + 0. (g(x)p(t,z)) =0,t >0,z > 1
A boundary condition for the emission
b
g(U)p(t,1) = Bas(1) + [ B@ptade L t>0
S— 1
Emission by the primary tumor: p;, (t) D

Emission by the metastases

Growth law

T, = g(zp) with g(z) = azln (2) ~» Gompertz law




Mitosis - structuration by size

Oep + 0x(9(x)p) = —B(x + [ By)k(z, y)p(t, y) dy,
p(t,0) =0, p(0,z) = Po(x)

Properties of the kernel
= No fragmentation to a bigger size: k(z,y) =0if 2 >y
m Conservation of the total size: [ xk(z,y)dz =y
m For division into a fixed number p of pieces: [/ k(z,y)dzr =p
Classical examples
m Division into 2 cells of equal size - equal mitosis
Op + 0:(9(x)p) = —B(x)p(t, z) + 4B(22)p(t, 2x), > 0, t > 0,
p(t,0) =0, p(0,z) = po(x)
with k(z,y) = 2d,_y, so that IS k(z,y) dy = 2.
m Division into 2 cells with different sizes

Op + 0:(g(@)p) = —B(x)p(t, x) +2 [7 Bly)r(z,y)p(t,y) dy,
p(t,0) =0, p(0,z) = po(x)
here k(x,y) = 2k(z, y)
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Mitosis - structuration by size

Oip + 02(g(x)p) = —B(z + [.7° By)k(z, y)p(t, ) dy,
p(t) O) =0, p(O) ) = PO(x)

Properties of the kernel

= No fragmentation to a bigger size: k(z,y) =0if z >y

u Conservation of the total size: [ xk(x,y)dr =y

m For division into a fixed number p of pieces: [} k(z,y)dz =p
Classical examples

= Renewal equation: k(z,y) = $(6(z =0) + 6(z = y))

m Autosimilar case: k(z,y) = l/10 (z) with fo sko(s)ds = 1.

~ general mitosis: kg =, + d1_,, 7 € [0, 2]
~~ homogeneous fragmentation: ro(s) = (1 + a) (s* + s'7%),
a>—1

10



General emission of metastases

Each tumor (primary or secondary) can emit several tumors of
different size !

t> Ty

Ty infr

o Growth gp Primary 9
- —_—
Gompertz tumor cell
one cell
messu’\n Rap, @)
e °
Emission k(y,
‘L‘

Caracterisation of the emission

Primary

tumor cell

Emission k(y, =

» [(z) emision rate
» k(y,z) probability for a tumor of size x to emmit a metastase of size y.

~ a growth-fragmentation equation with source term

11




General emission of metastases

Each tumor (primary or secondary) can emit several tumors of
different size !

T infraclinic time t> T

“+oo
D o(t,3) + g (@)plt, 2)) = Ry (1) = Bt ) + [ Bk )olt,v) dy

Few results on this equation and still open questions on this
equation!
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Microtubule dynamical instabilities

MT in the cell
m MTs are part of the
cytosqueleton.

m MTs are caracterized
by their instabilities.

Protein structure
m Each MT is a long (up to 50um) hollow cylinder of 25nm
diameter built from about 13 protofilaments.
m Each protofilament is composed by an assembly of |8 tubulin
dimers.
m The assembly is polarized with different dynamics at the + end

(highly dynamic) OI - end (fixed in cells).
m Dimers can be in two energy states :

M crr: Guanosine triphosphate - active form
M cor: Guanosine diphosphate - inactive form

12



Dynamics of one MT at its + end

Dimers of tubulin
m Dimers can be in two energy states :

M crr: Guanosine triphosphate - active form
M cpor: Guanosine diphosphate - inactive form

m Dimers can be polymerized or not. In fine,

GTP polymerized in MTs
GDP polymerized in MTs
Free cTp
Free Gpp

m Biological observations:

B Existence of a GTP-stabilizing cap
B Disparition of the cap at the catastrophe

m Four reactions

Hydrolysis Polymerisation

Stabilizing cap’\ )
o9

o9
o o
Recycling

Fragmentation

13



MTs dynamical instabilities

A structured population approach as in Hinow et al. (2009)
u(t, z,z) density of MT in polymerisation

M ¢ time, = length, = length of the cap.

v(t, z) density of the population of MT in depolymerisation
B ¢ time, = length.

p = p(t) Free GTP tubulin
B ¢ time.

q = q(t) Free GDP tubulin

B ¢ time.
~+ Two transport equations (for both polymerisation and
depolymerisation) coupled to two ODEs.
~> Several extensions
New issue for the depolymerisation: ~~ fragmentation process

14




MTs dynamical instabilities

FH, M. Tournus, D. White, JTB (2017)

Hydolysis speed igaro  Growth specd vy (r)

Polymen;xnon
Stablllzmg uip mgnmmm Vepot

Recycling &

Equation for u
Oru + Ypot (p(1)) 0zt + (Ypor (P(1)) — Yhydro)Fzu = 0
Equation for v

v = —R(®)ult, 0, 2)+Yaepor (— /0 " ka, #)o(t, ) di + / =k, 2ot ) di)

Equation for p

d
P —Ypot (P / / (t,z,z) dzdz+kKq

Equation for ¢
iq = Ydepol / / (x — 2)k(z, z)v(t, x) dT de—Kq
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Theorical issues

15




A population structured by age

Death rate neglected

p(t+dt,a+dt) p(t+dt,a+da+dt)
FHEE=01>0a>0 ,« S
(906,00 = [ B plty)dy t>0 L
p(0,a) = po(a), a >0 :

plt.a) plt.a+ da)

m p(t,a) density at time ¢ with an age a
m B(a) is the birth rate

Theorem

Assume that B € L®(RT) with B >0 and 1 < [;° B(y) dy, then (*¥)
admits a unique solution p € C(RT; LY(R*, ¢(x)dx)) and if
1p0(@)] < CoN(z) then

|1 t,0) = N @ o(ade — 0

where (Ao, N, @) are the eigenelements associated to the problem.




A population structured by age

Death rate neglected ~ p(t,.) ~ e**pyN(.)

9 O _ - -
5 T3 =0 p(t,0) = ; B(y) p(t,y) dy, p(0,a) = po(a)

t=149.9

lledt. )l

0.10

distribution p(t..)/ | p(t, -)ll:

35,

10 20 30 40 50 Gl 20 40 60 80 100 120 140
x t
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A population structured by age

7/’4_7—0 p(t,0) = /B p(t,y) dy, p(0,a) = po(a)

Existence thanks to a fixed point
m Along the characteristic lines: X(s;t,a) =a+s—t

s+ X(s;t,a) is constant.

m Casea >t
p(t,a) = pola —t)
m Casea <t

plt.a) = plt — .0 = [ By plt.) dy
0
Finally, if p is a solution, p is a fixed point of

pg(a—t) ifa>t
1" B(y) p(t,y) dy else
with F' a contraction in C([0, T, Ll(gb(x) dx)) for T small enough.

F(p)(t,a) = {

18




A population structured by age

Death rate neglected ~ p(t,.) ~ e**pyN(.)
0
S = 0.p(t.0) = [ Bw) p(t.9) . p(0.0) = ()

Eigenvalue problem
m Eigenvalue problem:

XoN(a) + N'(a) =0, N(0) = /000 B(a)N(a)da (%)

= Adjoint problem
—Xod(a) + ¢'(a) = ¢(0)B(a)  (+x)

~ If B is a positive continuous function 3!(V, ¢, A) taking positive
values solution to (x) — (%) such that

/0  N(a)da = /O ~ b(a)N(a) da =

19




A population structured by age

Death rate neglected ~ p(t,.) ~ AotﬁoN( )

%4_? p(t,0) / B(y) p(t,y) dy, p(0,a) = po(a)
Eigenelements
{)\ON(a) +N'(a) =0, N(0) = [* B(a)N(a)da ()
—Xoo(a) + ¢'(a) = (0)B(a)  (x*)

Method of generalized entropy
m Conservation properties

b ot a)da = b a)p’(a)da = p
| @e ot ayda = [ o)) a

m Let m(t,a) = e_’\ot%, then for all convex function H

%/OOO ¢(a)N(a)H (m(t,a)) da:= A <0

and applied it for H(m) = |m — po|.
m If 310 > 0 such that Va € RY, 23 > 1y then
A< —po [ ¢NH(m)

20




Mitosis - structuration by age

Population of cells structured by age that divide at a rate B giving 2
cells of age 0.

p(t+dt,a+dt) p(t+dt,a+ da+ dt)
i 7 Time t+dt
%% B t>0az0 e
oo g T T Bla)p(t,a)
(xx) 4 p(t,0) =2 [~ B(y) p(t,y) dy, t >0
p(0,a) = po(a), a >0 - — T

m p(t,a) density at time ¢ with an age a
m B(a) is the division rate
Similar results in that case

[t - poV@o(e)da 0

where (Ao, N, ¢) are the eigenelements, p° = [ ¢(a)p"(a) da, and
under assumptions on B, for instance

¢(a)
¢(0)

/Ooo B(y) dy = o0, 2B(a) > po

21




Metastase model

The original model of metastases Iwata & al (2000)

Somperts

m p(t,z) density of metastases at time ¢ of size x.
A transport equation for the growth of metastases

atp(m7t) + 8z(g($)p($,t)) =0,t>0,z>1

A boundary condition for the emission

b
gt 1) = By (1)) + / B@)p(t,z)de ,t>0

Emission by the primary tumor: p;, (t) ~~

Emission by the metastases

Growth law

b
z, = g(zp) with g(z) = azln (5) ~» Gompertz law

22




Metastases model

{ﬁtp(x,t)—l-a( 9(z)p(x, t))—O t>0,z>1
g(D)p(t,1) = pin(t) + [} B(z)p(t, x) do

Existence and uniqueness Barbolosi, Benabdallah, FH, Verga 2008
m If po € L'(1,b), there exists a unique weak solution
p € C([0,00[; L'(1,1)).
m Existence of strong solution for more regular pg and
compatibility condition between py and S(z,(0)).
Asymptotic behaviour Barbolosi, Benabdallah, FH, Verga 2008
m There exists (Ao, N, ¢) and v > 0 such that

e %) = AN| T ool g + / 207 |pin (1) d.

Ll (1, b)

23




Metastases model

{atp(x,t)w L (g(z)p(x, t))—O t>0,2>1
g(l)p(t 1 _pzn +f1 t.’L’ dx

Inverse problem

m The observables F(t) f1 p(t, x) dt are solution of a
Volterra equation

Fy(t) = [f(2p) % B(xp)](t) + [Fy * B(xp)](1)

Theorem

If Fy € CY,F§(0) =0 and Fy + f € C', Fy + £(0) £0,
then 8 can be identified from F¢(t) and x,.

23



Metastases model

Oip(x,t) + 0 (g(x)p(x, t))—O t>0z>1
g(l)p(t ]- _pln +f1 t 33 dac

Confrontation to the data
= Extension on the model

{ (tx)+ [gm()( z)]=0, z€[L,b), t>0

gm (1 = [} B@)p(t,z)dz + Blp(t))
p(0, x) ()

where g, and g,,, are one of the classical
growth speed:

Gompertz model (1825) g(z) = azIn (%)
Hybrid Gompertz (HG) g(z) = min( Hrpaitren T ln (%))
Logistic model (1838) g(z) = ax (1 =
l
Von Bertalanffy (1949) g(z) = az ( E 3 )
_1 Good estimates f
West& al (1997) w(@) = am( )74 - ) " 00. e:[(‘;ma s for
_l B HW
Hybrid West (HW) g(x) = min ( ajpyitros T % 1 -

23



Growth fragmention equation

% + 2 (g(x)p) = —B(x)p(t, ) + [3° By)k(z,y)p(t,y) dy, t > 0, 2 >0
p(t,0) =0, ¢ >0
p(0,z) = po(z), = >0

m p is the density of a population structured by a variable (trait) =
at time ¢

m g is the growth rate
m B is the total division/fragmentation rate

m k(x,y) is the fragmentation kernel: rate at which individuals of
trait x are obtained from an individual of trait y.

24



Growth fragmentation equation

{atp +8a(g(x)p) = —B(@)p(t,z) + [ B(y)k(z,y)p(t,y) dy,
p(t,0) =0, p(0,z) = po(x)

Some references

m Perthame, 2007: Study for g = 1 of the eigenvalue problem via
the Krein-Rutman problem. Hints for the proof of convergence.

m Doumic-Gabriel, 2013: existence of a solution to the eigenvalue
problem (direct and dual) given with many details for the case
J K(z,y)dy = 2 and for B and g general.

m Gabriel & al, 2021: Asymptotic behaviour p(t,z) ~ e N(z) for
quite general assumption on k£ and B using a probabilistic
approach namely Harry’s theorem.

25




Growth fragmentation equation

Oep+ 0x(g(x)p) = —B(x + [ By)k(z, y)p(t,y) dy,
p(t,0) =0, p(0,2) = po(w)

Results from Gabriel & al, 2021
Assumptions (H.,)
m Assumptions on the kernel.

B Autosimilar kernel such that rg(s) > ¢ > 0 and [§ kg < oo.
B k5 =257 (can be relax)
2

m Asumption on the growth term :
| fol é < oo
B Asumption on H defined by H(z) = [§ 1 < co eg H < 0o on RT, H invertible, H ™1

9
does not grow too fast

= Asumptions on the relation between B and g

zB(z) _
g(z) —

] f1€<<x> hmom((z)) =0, limy o +oo

25




Growth fragmentation equation

Oup + 0u(g(x)p) = —B(x)p(t, x) + [ B(y)k(z,y)p(t,y) dy,
p(t,0) =0, p(0,z) = po(x)

Results from Gabriel & al, 2021

Theorem

Under asumptions (H,), the eigenvalue problem

—(gN)' — BN + [ B(y)k(z,y)N(y) dy = XoN, (gN)(0) =0, [N =1
—g9¢' — Bo+ [ B(y)k(z,y)p(y) dy = Moo, [N =1

admits a unique solution (Ao, N, ®).
If lpollv < oo,

le="o(t,.) = poN |, < Ce™ |lpo = poN ||y, ¥t = 0

where V is a weight depending on the data.

25




General emission of metastases

Each tumor (primary or secondary) can emit several tumors of
different size !

Caracterisation of the emission
» ((z) emision rate
» k(y,z) probability for a tumor of size x to emmit a metastase of size y,
typically
k(y, ) = ko(y) + ko(z — y)
with Supp(ko) Clzo,z1[ and fﬂ:zol ko(y)dy = 1.

~ a growth-fragmentation equation with source term

26



General emission of metastases

Each tumor (primary or secondary) can emit several tumors of
different size !

—+oo
D ot + g (@)plt, 2)) = Ry (1) ~ Bt ) + [ Bkt )olt,v) dy

x

Few results on this equation and still open questions on this equation
!

26




MTs dynamical instabilities

Coupled fragmentation equations with ODE small
u(t, z,z) density of MT in polymerisation
v(t,x) density of the population of MT in depolymerisation
p = p(t) Free GTP tubulin
q = q(t) Free GDP tubulin
At Macroscopic level
Myt |7 [ wult, z,z) dzdx Total amount of MT in
polymerisation
M, : t — [;° zv(t,2) dz Total amount of MT in depolymerisation

~~+ Conservation of the tubulin
My (t) + My (t) +p(t) + q(t) = Cte

Asymptotic behaviour at the macroscopic level

~~ Damped oscillations at the macroscopic level ! .
2




Simplified models to understand the asymptotics

m The population of polymer represented by w : ~ w(t, )

B The model reduces to evolution of w, p, g
m Model should nevertheless reflects
B The role of the balance between hydrolysis and growth rate.

B Y00 (P(t)) < Yhydro = period of catastrophe
B Yot (P(t)) > Yhydro = period of rescue

We introduce a threshold ~ pj such that v,,1(Pr) = Yhydro

® p <pp = period of catastrophe
® p>pp = period of rescue

28




Simplified models to understand the asymptotics

Equation for w
Orw + Ypot (p(1)) e w =
+depor (P(t) < pn) (—/ k(Z, x)w(t, z) di‘+/ k(z, T)w(t, T) di’)
0 x

Equation for p
d o0 x
Ep = —Ypol (p(t)) w(tz 2, 'T) dde_F’iq
t o Jo

Equation for ¢

%q = Ydepol (P(t) < pn) /000 /Om(x — 2)k(Z, 2)w(t, x) dT dv—rq

28




Simplified models to understand the asymptotics

The fragmentation terms

—wepol/ k(fc,x)w(t,x)di—I—“ydepoz/ k(z, 2)w(t,z) dx
0 T

with k(Z, z) the probability for a MT of size x to reach the size & < x
Two types of kernel identified from the experiments

m ko(y,z) = G(y — z): depolymerisation length is almost fixed

m ki (y,x) = G(z): size of the MTs after a depolymerisation is
almost fixed

here G(z) =

—(z—20)?

U\}ﬁexp 5oz T0>0,0>0
~» Reduction to ODE system is impossible

29



Simplified models to understand the asymptotics

Asymptotics for the kernel kg

Length distribution of MTs ()
X0=0.4, t=272.855

Gt p

— Total polymer

oo \ X0=15, t=85.487

Tubulin concentration (1)

Asymptotics for the kernel ky

Length distribution of MTs (um)
x1=0.4, t=21.586
x1=1.6, t=19.567

Tubulin concentration (1)

0 0
Time (minutes)

~ Rapid convergence at the macroscopic level, slow convergence of
the distribution profil

29




Simplified models to understand the asymptotics

The most simplified model
Equation for w

Ovw + Ypot (p(1)) Oew = ()N (p(t))
+  Bp(t)) (7/0 k(z,Z)w(t, z) dT + / k(Z, z)w(t, T) di)

~Ydepol (P(t)<Ph)
Equation for p

Gp==a0(0) [ [tz dede - Ko0)

+8(p(t)) /000 /Ox(:t — 2)k(z, T)w(t,z) dz dx

~~ Wellpossness of the system with conservation properties
/OO oo 0
zw(t, z) dz + p(t) =/ zw(0, x) de + p(0) := My
0 0

~» Numerical observations p(t) — p>, w(t,.) - W for large time 1.

Tournus, White, 2017
~ Existence and uniqueness of the asymptotic profile (W, p*)

~ Convergence Work in progress with M. Potomkin, S. D. Ryan, M. Tournus
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Conclusion

Transport equations with eventually fragmentation terms are a
powerfull tool to model biological issues.

Thank you for your attention !
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A population structured by age

Direct problem.

AN (a)+N'(a) =0, N(0) = [;~ B(a)N(a) da (%)

We have N(a) = N(0)e*0% with

/B(aN(a / B(a)e " da

~ Existence of N < Existence of A such that F(\g) = 1 where

() = /0 ” Bla)e > da.

If Be L™ with 1 < fooo B, F'is a decreasing function and

limF()\)z/ B>1land lim F(\) =0
A—0 0 A—00

Therefore there exists a unique (\p, N) solution of (x) such that
JoS N(a)da =1: N(a) = Age*®. The parameter X is called the the
Malthus parameter.
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A population structured by age

Direct problem.

AoN(a)+N'(a) =0, N(0) = [§” B(a)N(a)da (%)

Adjoint problem

—Xod(a) + ¢'(a) = ¢(0)B(a)  (xx)

To find the adjoint problem, multiply () by ¢ and integrate
0= [T OoN+N)sda = [T N go—s') da—sO)N(©) = [F N(@(rg@(a) = ¢ (@) = Ba)2(0) da

The solution of (xx) is given by

é(a) = ¢(0) (e%“ + / ’ o= B(a)) da’> with ¢(0) such that / b N¢ =1.
0

0
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A population structured by age

m Conservation properties
W0 = [ ol ot ayda = [ oa)p(a)dai= g
0 0
Indeed,

d oo —Apt —Xot
~w(r) /o pe (=Xpp + 9¢p) da /0 de (=20p = dap) da
Aot (/0°° p(=Xo% + ¢') da — p(t, 0>¢<0>)

e20t60) ([% o8 - p(1,0)) =0
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A population structured by age

= Let m(t,a) = e~ Mot 2L a)), then for all convex function H

%/0 ¢(a)N(a)H (m(t,a)) da:=A <0

Indeed,

-2 .p)N — N’ _ —XoN — N’
8tm—|—8am=e_)‘0t( 0p+5'tpz'f\‘]28 p) P_., )\ot(O]V72)p:0
with .

m(t,0) = /°° (b, aydp(a), du(a) = 2LV (@
o N(0)

d
:¢N = —#(0)B(a)N(a)

Thus, for m(t,a) = ¢(a)N(a)H(m(t,a)), we have

B(a)
Bt @) + am(ts @) = ~X(@)R(t @) with x(a) = 26(0) _

and thus

d oo
— m(t,a)da
dt J0

m(t, 0) — /O°° x(a)m(t, a) da
= ¢(0)N(0)H(m(t,0)) — /Ooo 2¢(0)B(a)N(a)H(m(t, a)) da

= eNO (1 (/0“’ m(t, a)du(a)) - J wom, (@) <0 "




A population structured by age

m If Juo > 0 such that Va € RY, % > po for a H(m) = |m — po|
we have A < —poH(m).
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Mitosis - structured by age

XoN(a) + N'(a) = —B(a)N(a), N(0) =2 fooo B(a)N(a)da ()

We have N(a) = N(0)e~ Jo QotB())ds with
N(0) = 2/ B(a)N(a)da = 2N(O)/ B(a)e " da
0 0
~ Existence of N < Existence of A\g such that F'(A\g) = 1 where
(o)
F(\) = 2/ B(a)e™ Jo O+B@) qq
0

If B € L* with [;° B = +o0, F is a decreasing function and

lim F(A\) =2 and lim F(A\) =0

A—0 A—00
Therefore, there exists a unique (Mg, V) solution of (*) such that

1S N(a)da =1.
The parameter \q is called the the Malthus parameter.
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Mitosis - structured by age

MoN(a) + N'(a) = —B(a)N(a), N(0) =2 fooo B(a)N(a)da (%)

Adjoint problem

Aog(a)—¢'(a)+B(a)p(a) = 26(0)B(a) ||  (+x)

To find the adjoint problem, multiply (%) by ¢ and integrate
0= /()OO(AON+N’+BN)¢ da = /Ooo N(Ag¢—¢'+B) da—¢(0)N(0) = /0°° N(a)(Ag¢ — ¢’ + B — 2B¢(0)) da

The solution of (xx*) is given by

d(a) = 2¢(0) / B(a)e & O+BE) s g4/ with $(0) such that / N¢=1.
a 0
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Properties of the fragmentation kernels

k(z,y) = B(z)s(z,y) with [k(z,y)dy =1, k(z,y) =0ify >z
The kernel ko(z,y) = G(z — y)(x > y) with [~ G < 400

B = [6@-way= ["cway, [T Bwxwma= [T ow-may= [T 6= dx < oo
The kernel ki (z,y) = G(y)(x > y) with [;* G < +o0

B(a) = /0m G(y) dy, /:° B(y)x(y, @) dy = /w°° G(y) dy < oo

In both cases, G is a non negative function with
B(z) < By if / G(y)dy < o0
0
B is an increasing function such that B(0) = 0,

Jz_ > 0 such that B(z) > By, > 0Vz > z_ if / G(y)dy #0
0
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