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Motivation I: Metastatic spreading

Metastases: a major cause of death in cancer

Metastatic state of the patient is often difficult to evaluate, as
micro-tumors are hardly detectable from imagery.

Questions

Can we design a new “in silico” metastatic index?

Can we infer the metastatic aggressivity from biomarkers?

Mathematic tools

McKendrick-Von Foerster equation for a simple emission

Growth-fragmentation equation for general emission
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Motivation II: Microtubules

Microtubules: a therapeutic target in oncology

MTs play a crucial role in cell division, in cell migration
⇝ MTs are a favorite target of Microtubule Targeting Agents

(MTAs), successfully used as antimitotic more recently as
antiangiogenic agent or antimigratory agent in cancer treatments.
MTs are polymers highly dynamic.

Questions

Can we model the effect of MTAs on the MT dynamical
instabilities?
Can we better understand the low dose effect of MTAs?

Mathematical tools

Complex models using Growth-fragmentation equations
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McKendrick-Von Foerster vs growth-fragmentation eq.

Perthame, Transport equation in biology, 2006

McKendrick-Von Foerster equation
∂ρ
∂t +

∂
∂x (g(x)ρ) = −D(x)ρ(t, x), t > 0, x > 0

ρ(t, 0) =
∫∞
0

B(y) ρ(t, y) dy, t > 0

ρ(0, x) = ρ0(x), x > 0

Typically, ρ is the density of a population structured by the age x and
g is the growth rate in x, B is the birth rate and D the death rate. In
the case where x is the age a, (g(a) = 1), the equation is also called
the renewal equation.

Growth-fragmentation equation
∂ρ
∂t +

∂
∂x (g(x)ρ) = −B(x)ρ(t, x) +

∫∞
0

B(y)k(x, y)ρ(t, y) dy, t > 0, x > 0

ρ(t, 0) = 0, t > 0

ρ(0, x) = ρ0(x), x > 0

Typically, ρ is the density of a cell population structured by its size x
and B is the division rate and k(x, y) is the probability that the
division of a cell of size y leads to a cell of size x.
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Outline

1 Some classical biological contexts
McKendrick-Von Foerster equations

Population structured by age
Mitosis - structuration by age
Metastases - single cell emission

Growth-fragmentation equations
Mitosis - structuration by size
Metastases - emission by cluster
MTs dynamical instabilities

2 Theorical issues
The McKendrick-Von Foerster equation

Model for a population structured by age
Model for mitosis - structuration by age
Model of metastases - single cell emission

Growth-fragmention equation
Model for Mitosis - structuration by size
Model of metastases - emission by cluster
MTs dynamical instabilities
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Population structured by age

Perthame, Transport equation in Biology

Death neglected

(∗)


∂ρ
∂t +

∂ρ
∂a = 0, t > 0, a > 0

ρ(t, 0) =
∫∞
0

B(y) ρ(t, y) dy, t > 0

ρ(0, a) = ρ0(a), a > 0

Time t

Time t+ dt

ρ(t, a) ρ(t, a+ da)

ρ(t+ dt, a+ dt) ρ(t+ dt, a+ da+ dt)

∫ a+da+dt

a+dt
ρ(t+ dt, a′) da′ =

∫ a+da

a
ρ(t, a′) da′

⇓
da ρ(t+ dt, a+ dt) ∼ da ρ(t, a)

⇓
da dt (∂tρ(t, a) + ∂aρ(t, a)) ∼ 0

ρ(t, a) density at time t with an age a

B(a) is the birth rate
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Population structured by age

Perthame, Transport equation in Biology

with a death term

(∗)


∂ρ
∂t +

∂ρ
∂a = −D(a)ρ(t, a), t > 0, a > 0

ρ(t, 0) =
∫∞
0

B(y) ρ(t, y) dy, t > 0

ρ(0, a) = ρ0(a), a > 0

Time t

Time t+ dt

ρ(t, a) ρ(t, a+ da)

ρ(t+ dt, a+ dt) ρ(t+ dt, a+ da+ dt)

Death

−dt daD(a)ρ(t, a)

Qt,a

∫ a+da+dt

a+dt
ρ(t+ dt, a′) da′ =

∫ a+da

a
ρ(t, a′) da′ −

∫
Qt,a

D(a′)ρ(s, a′) da′ ds

⇓
da ρ(t+ dt, a+ dt) ∼ daρ(t, a)− da dtD(a)ρ(s, a)

⇓
da dt (∂tρ(t, a) + ∂aρ(t, a)) ∼ −da dtD(a)ρ(s, a)

ρ(t, a) density at time t with an age a

B(a) is the birth rate

D(a) is the death rate
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Mitosis - structuration by age

Population of cells structured by age that divide at a rate B giving 2
cells of age 0.

(∗∗)


∂ρ
∂t +

∂ρ
∂a = −B(a)ρ(t, a), t > 0, a > 0

ρ(t, 0) = 2
∫∞
0

B(y) ρ(t, y) dy, t > 0

ρ(0, a) = ρ0(a), a > 0 Time t

Time t+ dt

ρ(t, a) ρ(t, a+ da)

ρ(t+ dt, a+ dt) ρ(t+ dt, a+ da+ dt)

Division

−dt daB(a)ρ(t, a)

ρ(t, a) density at time t with an age a

B(a) is the division rate
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Metastases - single cell emission

The original model of metastases Iwata & al (2000)

one cell

Growth g

Gompertz

gPrimary

tumor cell

Primary

tumor cell

g
meta

Emission β(xp)

Emission β(xm)

Emission β(xp) = mxαp

T0 infraclinic time t > T0

Temps t

Temps t+ dt

ρ(t, x) ρ(t, x+ dx)

ρ(t+ dt, x̂) ρ(t+ dt, x̂+ dx)

∫ x̂+dx

x̂
ρ(t+ dt, y) dy =

∫ x+dx

x
ρ(t, y) dy

x̂ ∼ x+ dt g(x), x̂+ dx ∼ x+ dx+ dt g(x+ dx)

ρ(t, x) density of metastases at time t of size x.
A transport equation for the growth of metastases

∂tρ(t, x) + ∂x(g(x)ρ(t, x)) = 0, t > 0, x > 1

A boundary condition for the emission

g(1)ρ(t, 1) = β(xp(t))︸ ︷︷ ︸
Emission by the primary tumor: ρin(t)

+

∫ b

1

β(x)ρ(t, x) dx︸ ︷︷ ︸
Emission by the metastases

, t > 0

Growth law

x′p = g(xp) with g(x) = ax ln

(
b

x

)
⇝ Gompertz law
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Mitosis - structuration by size
{
∂tρ+ ∂x(g(x)ρ) = −B(x)ρ(t, x) +

∫ +∞
x

B(y)k(x, y)ρ(t, y) dy,

ρ(t, 0) = 0, ρ(0, x) = ρ0(x)

Properties of the kernel

No fragmentation to a bigger size: k(x, y) = 0 if x > y

Conservation of the total size:
∫ y

0
xk(x, y) dx = y

For division into a fixed number p of pieces:
∫ y

0
k(x, y) dx = p

Classical examples
Division into 2 cells of equal size - equal mitosis{

∂tρ+ ∂x(g(x)ρ) = −B(x)ρ(t, x) + 4B(2x)ρ(t, 2x), x > 0, t > 0,

ρ(t, 0) = 0, ρ(0, x) = ρ0(x)

with k(x, y) = 2δx= y
2
, so that

∫ y

0
k(x, y) dy = 2.

Division into 2 cells with different sizes{
∂tρ+ ∂x(g(x)ρ) = −B(x)ρ(t, x) + 2

∫ +∞
x

B(y)κ(x, y)ρ(t, y) dy,

ρ(t, 0) = 0, ρ(0, x) = ρ0(x)

here k(x, y) = 2κ(x, y)
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Mitosis - structuration by size

{
∂tρ+ ∂x(g(x)ρ) = −B(x)ρ(t, x) +

∫ +∞
x

B(y)k(x, y)ρ(t, y) dy,

ρ(t, 0) = 0, ρ(0, x) = ρ0(x)

Properties of the kernel

No fragmentation to a bigger size: k(x, y) = 0 if x > y

Conservation of the total size:
∫ y

0
xk(x, y) dx = y

For division into a fixed number p of pieces:
∫ y

0
k(x, y) dx = p

Classical examples

Renewal equation: k(x, y) = 1
2 (δ(x = 0) + δ(x = y))

Autosimilar case: k(x, y) = 1
yκ0

(
x
y

)
with

∫ 1

0
sκ0(s) ds = 1.

⇝ general mitosis: κ0 = δr + δ1−r, r ∈ [0, 1
2 ]

⇝ homogeneous fragmentation: κ0(s) = (1 + α)
(
sα + s1−α

)
,

α > −1
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General emission of metastases

Each tumor (primary or secondary) can emit several tumors of
different size !

one cell

Growth gp

Gompertz

gpPrimary

tumor cell

Primary

tumor cell

gm
meta

Emission k̄(xp, x)

Emission k(y, x)

Emission k̄(xp, x)

T0 infraclinic time t > T0

gm
meta

Emission k(y, x)

Emission k̄(xp, x)

Caracterisation of the emission

▶ β(x) emision rate

▶ k(y, x) probability for a tumor of size x to emmit a metastase of size y.

⇝ a growth-fragmentation equation with source term
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General emission of metastases

Each tumor (primary or secondary) can emit several tumors of
different size !

one cell

Growth gp

Gompertz

gpPrimary

tumor cell

Primary

tumor cell

gm
meta

Emission k̄(xp, x)

Emission k(y, x)

Emission k̄(xp, x)

T0 infraclinic time t > T0

gm
meta

Emission k(y, x)

Emission k̄(xp, x)

∂

∂t
ρ(t, x) +

∂

∂x
[gm(x)ρ(t, x)] = k̄(x, xp(t))− β(x)ρ(t, x) +

∫ +∞

x

β(y)k(x, y)ρ(t, y) dy

Few results on this equation and still open questions on this
equation!
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Microtubule dynamical instabilities

MT in the cell

MTs are part of the
cytosqueleton.

MTs are caracterized
by their instabilities.

Protein structure

Each MT is a long (up to 50µm) hollow cylinder of 25nm
diameter built from about 13 protofilaments.
Each protofilament is composed by an assembly of α|β tubulin
dimers.
The assembly is polarized with different dynamics at the + end
(highly dynamic) or - end (fixed in cells).
Dimers can be in two energy states :

gtp : Guanosine triphosphate - active form
gdp : Guanosine diphosphate - inactive form

12



Dynamics of one MT at its + end

Dimers of tubulin
Dimers can be in two energy states :

gtp : Guanosine triphosphate - active form
gdp : Guanosine diphosphate - inactive form

Dimers can be polymerized or not. In fine,
gtp polymerized in MTs
gdp polymerized in MTs
Free gtp
Free gdp

Biological observations:
Existence of a GTP-stabilizing cap
Disparition of the cap at the catastrophe

Four reactions

Hydrolysis Polymerisation

Stabilizing cap
Fragmentation

Recycling
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MTs dynamical instabilities

A structured population approach as in Hinow et al. (2009)

1 u(t, z, x) density of MT in polymerisation
t time, x length, z length of the cap.

2 v(t, x) density of the population of MT in depolymerisation
t time, x length.

3 p = p(t) Free GTP tubulin
t time.

4 q = q(t) Free GDP tubulin
t time.

⇝ Two transport equations (for both polymerisation and
depolymerisation) coupled to two ODEs.

⇝ Several extensions Barlukova PHD

New issue for the depolymerisation: ⇝ fragmentation process
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MTs dynamical instabilities

FH, M. Tournus, D. White, JTB (2017)

Hydrolysis speed γhydro Growth speed γpol(p)

Stabilizing cap
Fragmentation γdepol

Recycling κ

Polymerisation

Equation for u

∂tu+ γpol(p(t))∂xu+ (γpol(p(t))− γhydro)∂zu = 0

Equation for v

∂tv = −R(t)u(t, 0, x)+γdepol
(
−
∫ x

0

k(x, x̃)v(t, x) dx̃+

∫ ∞

x

k(x̃, x)v(t, x̃) dx̃

)
Equation for p

d

dt
p = −γpol(p(t))

∫ ∞

0

∫ x

0

u(t, z, x) dzdx+κq

Equation for q

d

dt
q = γdepol

∫ ∞

0

∫ x

0

(x− x̃)k(x, x̃)v(t, x) dx̃ dx−κq
14
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A population structured by age

Perthame, Transport equation in Biology

Death rate neglected

(∗)


∂ρ
∂t +

∂ρ
∂a = 0, t > 0, a > 0

ρ(t, 0) =
∫∞
0

B(y) ρ(t, y) dy, t > 0

ρ(0, a) = ρ0(a), a > 0 Time t

Time t+ dt

ρ(t, a) ρ(t, a+ da)

ρ(t+ dt, a+ dt) ρ(t+ dt, a+ da+ dt)

∫ a+da

a
ρ(t, s) ds =

∫ a+da+dt

a+dt
ρ(t+ dt, s) ds

ρ(t, a) density at time t with an age a
B(a) is the birth rate

Theorem

Assume that B ∈ L∞(R+) with B ≥ 0 and 1 <
∫∞
0

B(y) dy, then (*)
admits a unique solution ρ ∈ C(R+;L1(R+, ϕ(x)dx)) and if
|ρ0(x)| ≤ C0N(x) then∫ ∞

0

|e−λ0tρ(t, x)− ρ̄0N(x)|ϕ(x)dx −→
t→∞

0

where (λ0, N, ϕ) are the eigenelements associated to the problem.
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A population structured by age

Death rate neglected ⇝ ρ(t, .) ∼ eλ0tρ̄0N(.)

∂ρ

∂t
+
∂ρ

∂a
= 0, ρ(t, 0) =

∫ ∞

0

B(y) ρ(t, y) dy, ρ(0, a) = ρ0(a)

17



A population structured by age

∂ρ

∂t
+
∂ρ

∂a
= 0, ρ(t, 0) =

∫ ∞

0

B(y) ρ(t, y) dy, ρ(0, a) = ρ0(a)

Existence thanks to a fixed point

Along the characteristic lines: X(s; t, a) = a+ s− t

s 7→ X(s; t, a) is constant.

Case a > t
ρ(t, a) = ρ0(a− t)

Case a ≤ t

ρ(t, a) = ρ(t− a, 0) =

∫ ∞

0

B(y) ρ(t, y) dy

Finally, if ρ is a solution, ρ is a fixed point of

F (ρ)(t, a) =

{
ρ0(a− t) if a > t∫∞
0

B(y) ρ(t, y) dy else

with F a contraction in C([0, T [, L1(ϕ(x) dx)) for T small enough.
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A population structured by age

Death rate neglected ⇝ ρ(t, .) ∼ eλ0tρ̄0N(.)

∂ρ

∂t
+
∂ρ

∂a
= 0, ρ(t, 0) =

∫ ∞

0

B(y) ρ(t, y) dy, ρ(0, a) = ρ0(a)

Eigenvalue problem Sketch of proof

Eigenvalue problem:

λ0N(a) +N ′(a) = 0, N(0) =

∫ ∞

0

B(a)N(a) da (∗)

Adjoint problem

−λ0ϕ(a) + ϕ′(a) = ϕ(0)B(a) (∗∗)

⇝ If B is a positive continuous function ∃!(N,ϕ, λ) taking positive
values solution to (∗)− (∗∗) such that∫ ∞

0

N(a) da =

∫ ∞

0

ϕ(a)N(a) da = 1
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A population structured by age

Death rate neglected ⇝ ρ(t, .) ∼ eλ0tρ̄0N(.)

∂ρ

∂t
+
∂ρ

∂a
= 0, ρ(t, 0) =

∫ ∞

0

B(y) ρ(t, y) dy, ρ(0, a) = ρ0(a)

Eigenelements{
λ0N(a) +N ′(a) = 0, N(0) =

∫∞
0
B(a)N(a) da (∗)

−λ0ϕ(a) + ϕ′(a) = ϕ(0)B(a) (∗∗)

Method of generalized entropy
Conservation properties∫ ∞

0

ϕ(a)e−λ0tρ(t, a) da =

∫ ∞

0

ϕ(a)ρ0(a) da := ρ̄0

Let m(t, a) = e−λ0t ρ(t,a)
N(a) , then for all convex function H

d

dt

∫ ∞

0

ϕ(a)N(a)H (m(t, a)) da := ∆ ≤ 0

and applied it for H(m) = |m− ρ̄0|.
If ∃µ0 > 0 such that ∀a ∈ R+, ϕ(0)B(a)

ϕ(a)
≥ µ0 then

∆ ≤ −µ0

∫∞
0
ϕNH(m)
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Mitosis - structuration by age

Population of cells structured by age that divide at a rate B giving 2
cells of age 0.

(∗∗)


∂ρ
∂t +

∂ρ
∂a = −B(a)ρ(t, a), t > 0, a > 0

ρ(t, 0) = 2
∫∞
0

B(y) ρ(t, y) dy, t > 0

ρ(0, a) = ρ0(a), a > 0 Time t

Time t+ dt

ρ(t, a) ρ(t, a+ da)

ρ(t+ dt, a+ dt) ρ(t+ dt, a+ da+ dt)

Division

−dt daB(a)ρ(t, a)

ρ(t, a) density at time t with an age a

B(a) is the division rate

Similar results in that case∫ ∞

0

|e−λ0tρ(t, a)− ρ̄0N(a)|ϕ(a)da −→
t→∞

0

where (λ0, N, ϕ) are the eigenelements, ρ̄0 =
∫∞
0

ϕ(a)ρ0(a) da, and
under assumptions on B, for instance∫ ∞

0

B(y) dy = ∞, 2B(a) ≥ µ0
ϕ(a)

ϕ(0)
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Metastase model

The original model of metastases Iwata & al (2000)

one cell

Growth g

Gompertz

gPrimary

tumor cell

Primary

tumor cell

g
meta

Emission β(xp)

Emission β(xm)

Emission β(xp) = mxαp

T0 infraclinic time t > T0

ρ(t, x) density of metastases at time t of size x.
A transport equation for the growth of metastases

∂tρ(x, t) + ∂x(g(x)ρ(x, t)) = 0, t > 0, x > 1

A boundary condition for the emission

g(1)ρ(t, 1) = β(xp(t))︸ ︷︷ ︸
Emission by the primary tumor: ρin(t)

+

∫ b

1

β(x)ρ(t, x) dx︸ ︷︷ ︸
Emission by the metastases

, t > 0

Growth law

x′p = g(xp) with g(x) = ax ln

(
b

x

)
⇝ Gompertz law
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Metastases model

{
∂tρ(x, t) + ∂x(g(x)ρ(x, t)) = 0, t > 0, x > 1

g(1)ρ(t, 1) = ρin(t) +
∫ b

1
β(x)ρ(t, x) dx

Existence and uniqueness Barbolosi, Benabdallah, FH, Verga 2008

If ρ0 ∈ L1(1, b), there exists a unique weak solution
ρ ∈ C([0,∞[;L1(1, b)).

Existence of strong solution for more regular ρ0 and
compatibility condition between ρ0 and β(xp(0)).

Asymptotic behaviour Barbolosi, Benabdallah, FH, Verga 2008

There exists (λ0, N, ϕ) and γ > 0 such that∥∥∥e−λ0tρ(t) − ρ̄0N
∥∥∥
L1
ϕ
(1,b)

≤ e−γt ∥ρ0∥L1
ϕ
(1,b) +

∫ t

0

e−λ0τ |ρin(τ)| dτ.

23



Metastases model

{
∂tρ(x, t) + ∂x(g(x)ρ(x, t)) = 0, t > 0, x > 1

g(1)ρ(t, 1) = ρin(t) +
∫ b

1
β(x)ρ(t, x) dx

Inverse problem Hartung, 2015

The observables Ff (t) =
∫ b

1
f(x)ρ(t, x) dt are solution of a

Volterra equation

Ff (t) = [f(xp) ∗ β(xp)](t) + [Ff ∗ β(xp)](t)

Theorem

If Ff ∈ C1, Ff (0) = 0 and Ff + f ∈ C1, Ff + f(0) ̸= 0,
then β can be identified from Ff (t) and xp.
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Metastases model

{
∂tρ(x, t) + ∂x(g(x)ρ(x, t)) = 0, t > 0, x > 1

g(1)ρ(t, 1) = ρin(t) +
∫ b

1
β(x)ρ(t, x) dx

Confrontation to the data Hartung & al, 2014

Extension on the model
∂
∂t
ρ(t, x) + ∂

∂x
[gm(x)ρ(t, x)] = 0, x ∈ [1, b), t ≥ 0

gm(1)ρ(t, 1) =
∫ b

1
β(x)ρ(t, x)dx + β(xp(t))

ρ(0, x) = 0,

where gp and gm are one of the classical
growth speed:

Gompertz model (1825) g(x) = ax ln
(
b
x

)
Hybrid Gompertz (HG) g(x) = min

(
ainvitro, ax ln

(
b
x

))
Logistic model (1838) g(x) = ax

(
1 − x

b

)
Von Bertalanffy (1949) g(x) = ax

((
x
b

)− 1
3 − 1

)

West& al (1997) g(x) = ax

((
x
b

)− 1
4 − 1

)

Hybrid West (HW) g(x) = min

(
ainvitro, ax

((
x
b

)− 1
4 − 1

))

Use SAEM algorithm

.

Good estimates for

HG
HW
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Growth fragmention equation


∂ρ
∂t

+ ∂
∂x

(g(x)ρ) = −B(x)ρ(t, x) +
∫∞
0
B(y)k(x, y)ρ(t, y) dy, t > 0, x > 0

ρ(t, 0) = 0, t > 0

ρ(0, x) = ρ0(x), x > 0

ρ is the density of a population structured by a variable (trait) x
at time t

g is the growth rate

B is the total division/fragmentation rate

k(x, y) is the fragmentation kernel: rate at which individuals of
trait x are obtained from an individual of trait y.
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Growth fragmentation equation

{
∂tρ+ ∂x(g(x)ρ) = −B(x)ρ(t, x) +

∫ +∞
x

B(y)k(x, y)ρ(t, y) dy,

ρ(t, 0) = 0, ρ(0, x) = ρ0(x)

Some references

Perthame, 2007: Study for g = 1 of the eigenvalue problem via
the Krein-Rutman problem. Hints for the proof of convergence.

Doumic-Gabriel, 2013: existence of a solution to the eigenvalue
problem (direct and dual) given with many details for the case∫
κ(x, y)dy = 2 and for B and g general.

Gabriel & al, 2021: Asymptotic behaviour ρ(t, x) ∼ eλtN(x) for
quite general assumption on k and B using a probabilistic
approach namely Harry’s theorem.
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Growth fragmentation equation

{
∂tρ+ ∂x(g(x)ρ) = −B(x)ρ(t, x) +

∫ +∞
x

B(y)k(x, y)ρ(t, y) dy,

ρ(t, 0) = 0, ρ(0, x) = ρ0(x)

Results from Gabriel & al, 2021
Assumptions (H∗)

Assumptions on the kernel.
Autosimilar kernel such that κ0(s) ≥ c > 0 and

∫ 1
0 κ0 < ∞.

κ0 = 2δ 1
2

(can be relax)

Asumption on the growth term :∫ 1
0

1
g
< ∞

Asumption on H defined by H(z) =
∫ z
0

1
g
< ∞ eg H < ∞ on R+, H invertible, H−1

does not grow too fast

Asumptions on the relation between B and g∫ 1
0
B
g
< ∞, lim0

xB(x)
g(x)

= 0, lim+∞
xB(x)
g(x)

= +∞
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Growth fragmentation equation

{
∂tρ+ ∂x(g(x)ρ) = −B(x)ρ(t, x) +

∫ +∞
x

B(y)k(x, y)ρ(t, y) dy,

ρ(t, 0) = 0, ρ(0, x) = ρ0(x)

Results from Gabriel & al, 2021

Theorem

1 Under asumptions (H∗), the eigenvalue problem{
−(gN)′ −BN +

∫∞
x
B(y)k(x, y)N(y) dy = λ0N, (gN)(0) = 0,

∫
N = 1

−gϕ′ −Bϕ+
∫∞
x
B(y)k(x, y)ϕ(y) dy = λ0ϕ,

∫
Nϕ = 1

admits a unique solution (λ0, N, ϕ).

2 If ∥ρ0∥V < ∞,∥∥e−λ0tρ(t, .)− ρ̄0N
∥∥
V
≤ Ce−γt ∥ρ0 − ρ̄0N∥V , ∀t ≥ 0

where V is a weight depending on the data.
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General emission of metastases

Each tumor (primary or secondary) can emit several tumors of
different size !

one cell

Growth gp

Gompertz

gpPrimary

tumor cell

Primary

tumor cell

gm
meta

Emission k̄(xp, x)

Emission k(y, x)

Emission k̄(xp, x)

T0 infraclinic time t > T0

gm
meta

Emission k(y, x)

Emission k̄(xp, x)

Caracterisation of the emission

▶ β(x) emision rate

▶ k(y, x) probability for a tumor of size x to emmit a metastase of size y,
typically

k(y, x) = k0(y) + k0(x− y)

with Supp(k0) ⊂]x0, x1[ and
∫ x1

x0
k0(y) dy = 1.

⇝ a growth-fragmentation equation with source term
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General emission of metastases

Each tumor (primary or secondary) can emit several tumors of
different size !

one cell

Growth gp

Gompertz

gpPrimary

tumor cell

Primary

tumor cell

gm
meta

Emission k̄(xp, x)

Emission k(y, x)

Emission k̄(xp, x)

T0 infraclinic time t > T0

gm
meta

Emission k(y, x)

Emission k̄(xp, x)

∂

∂t
ρ(t, x) +

∂

∂x
[gm(x)ρ(t, x)] = k̄(x, xp(t))− β(x)ρ(t, x) +

∫ +∞

x

β(y)k(x, y)ρ(t, y) dy

Few results on this equation and still open questions on this equation
!
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MTs dynamical instabilities

Coupled fragmentation equations with ODE small

1 u(t, z, x) density of MT in polymerisation
2 v(t, x) density of the population of MT in depolymerisation
3 p = p(t) Free GTP tubulin
4 q = q(t) Free GDP tubulin

At Macroscopic level

1 Mu : t 7→
∫∞
0

∫ x

0
xu(t, z, x) dzdx Total amount of MT in

polymerisation
2 Mv : t 7→

∫∞
0

xv(t, x) dx Total amount of MT in depolymerisation

⇝ Conservation of the tubulin

Mu(t) +Mv(t) + p(t) + q(t) = Cte

Asymptotic behaviour at the macroscopic level

⇝ Damped oscillations at the macroscopic level !
27



Simplified models to understand the asymptotics

The population of polymer represented by w : ⇝ w(t, x)
The model reduces to evolution of w, p, q

Model should nevertheless reflects
The role of the balance between hydrolysis and growth rate.

γpol(p(t)) < γhydro ⇒ period of catastrophe
γpol(p(t)) > γhydro ⇒ period of rescue

We introduce a threshold ⇝ ph such that γpol(ph) = γhydro

p < ph ⇒ period of catastrophe
p > ph ⇒ period of rescue
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Simplified models to understand the asymptotics

Equation for w

∂tw + γpol(p(t))∂xw =

+γdepol(p(t) < ph)

(
−
∫ x

0

k(x̃, x)w(t, x) dx̃+

∫ ∞

x

k(x, x̃)w(t, x̃) dx̃

)
Equation for p

d

dt
p = −γpol(p(t))

∫ ∞

0

∫ x

0

w(t, z, x) dzdx+κq

Equation for q

d

dt
q = γdepol(p(t) < ph)

∫ ∞

0

∫ x

0

(x− x̃)k(x̃, x)w(t, x) dx̃ dx−κq
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Simplified models to understand the asymptotics

The fragmentation terms

−γdepol

∫ x

0

k(x̃, x)w(t, x) dx̃+ γdepol

∫ ∞

x

k(x, x̃)w(t, x̃) dx̃

with k(x̃, x) the probability for a MT of size x to reach the size x̃ < x
Two types of kernel identified from the experiments

k0(y, x) = G(y − x): depolymerisation length is almost fixed

k1(y, x) = G(x): size of the MTs after a depolymerisation is
almost fixed

here G(z) = 1

σ
√
2π

exp −(z−x0)
2

2σ2 , x0 > 0, σ > 0 Properties

⇝ Reduction to ODE system is impossible
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Simplified models to understand the asymptotics

Asymptotics for the kernel k0

Asymptotics for the kernel k1

⇝ Rapid convergence at the macroscopic level, slow convergence of
the distribution profil
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Simplified models to understand the asymptotics

The most simplified model
Equation for w

∂tw + γpol(p(t))∂xw = ψ(x)N (p(t))

+ β(p(t))︸ ︷︷ ︸
∼γdepol(p(t)<ph)

(
−
∫ x

0

k(x, x̃)w(t, x) dx̃+

∫ ∞

x

k(x̃, x)w(t, x̃) dx̃

)

Equation for p

d

dt
p = −γpol(p(t))

∫ ∞

0

∫ x

0

w(t, z, x) dzdx− N̄ (p(t))

+β(p(t))

∫ ∞

0

∫ x

0

(x− x̃)k(x, x̃)w(t, x) dx̃ dx

⇝ Wellpossness of the system with conservation properties∫ ∞

0
xw(t, x) dx + p(t) =

∫ ∞

0
xw(0, x) dx + p(0) := M

0
1

⇝ Numerical observations p(t) → p∞, w(t, .) →W for large time FH,

Tournus, White, 2017

⇝ Existence and uniqueness of the asymptotic profile (W, p∞)

⇝ Convergence Work in progress with M. Potomkin, S. D. Ryan, M. Tournus
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Conclusion

Transport equations with eventually fragmentation terms are a
powerfull tool to model biological issues.

Thank you for your attention !
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A population structured by age

Return

Direct problem.

λ0N(a)+N ′(a) = 0, N(0) =
∫∞
0
B(a)N(a) da (∗)

We have N(a) = N(0)e−λ0a with

N(0) =

∫ ∞

0

B(a)N(a) da = N(0)

∫ ∞

0

B(a)e−λ0a da

⇝ Existence of N ⇔ Existence of λ0 such that F (λ0) = 1 where

F (λ) =

∫ ∞

0

B(a)e−λa da.

If B ∈ L∞ with 1 <
∫∞
0

B, F is a decreasing function and

lim
λ→0

F (λ) =

∫ ∞

0

B > 1 and lim
λ→∞

F (λ) = 0

Therefore, there exists a unique (λ0, N) solution of (∗) such that∫∞
0

N(a) da = 1: N(a) = λ0e
−λ0a. The parameter λ0 is called the the

Malthus parameter.
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A population structured by age

Return

Direct problem.

λ0N(a)+N ′(a) = 0, N(0) =
∫∞
0
B(a)N(a) da (∗)

Adjoint problem

−λ0ϕ(a) + ϕ′(a) = ϕ(0)B(a) (∗∗)

To find the adjoint problem, multiply (∗) by ϕ and integrate

0 =

∫ ∞

0
(λ0N+N

′
)ϕ da =

∫ ∞

0
N(λ0ϕ−ϕ

′
) da−ϕ(0)N(0) =

∫ ∞

0
N(a)(λ0ϕ(a) − ϕ

′
(a) − B(a)ϕ(0)) da

The solution of (∗∗) is given by

ϕ(a) = ϕ(0)

(
eλ0a +

∫ a

0

eλ0(a−a′)B(a′) da′
)

with ϕ(0) such that

∫ ∞

0

Nϕ = 1.
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A population structured by age

Return

Conservation properties

Ψ(t) =

∫ ∞

0

ϕ(a)e−λ0tρ(t, a) da =

∫ ∞

0

ϕ(a)ρ0(a) da := ρ̄0

Indeed,

d

dt
Ψ(t) =

∫ ∞

0
ϕe

−λ0t(−λ0ρ + ∂tρ) da =

∫ ∞

0
ϕe

−λ0t(−λ0ρ − ∂aρ) da

= e
−λ0t

(∫ ∞

0
ρ(−λ0ψ + ϕ

′
) da − ρ(t, 0)ϕ(0)

)
= e

−λ0tϕ(0)
(∫ ∞

0
ρB − ρ(t, 0)

)
= 0
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A population structured by age

Return

Let m(t, a) = e−λ0t ρ(t,a)
N(a) , then for all convex function H

d

dt

∫ ∞

0

ϕ(a)N(a)H (m(t, a)) da := ∆ ≤ 0

Indeed,

∂tm+∂am = e−λ0t (−λ0ρ+ ∂tρ+ ∂aρ)N −N ′ρ

N2
= e−λ0t (−λ0N −N ′)ρ

N2
= 0

with
m(t, 0) =

∫ ∞

0
m(t, a)dµ(a), dµ(a) =

B(a)N(a)

N(0)

d

da
ϕN = −ϕ(0)B(a)N(a)

Thus, for m̄(t, a) = ϕ(a)N(a)H(m(t, a)), we have

∂tm̄(t, a) + ∂am̄(t, a) = −χ(a)m̄(t, a) with χ(a) = 2ϕ(0)
B(a)

ϕ(a)

and thus
d

dt

∫ ∞

0
m̄(t, a) da = m̄(t, 0) −

∫ ∞

0
χ(a)m̄(t, a) da

= ϕ(0)N(0)H(m(t, 0)) −
∫ ∞

0
2ϕ(0)B(a)N(a)H(m(t, a)) da

= ϕ(0)N(0)

(
H
(∫ ∞

0
m(t, a)dµ(a)

)
−
∫ ∞

0
H(m(t, a)dµ(a)

)
≤ 0
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A population structured by age

Return

If ∃µ0 > 0 such that ∀a ∈ R+, ϕ(0)B(a)
ϕ(a)

≥ µ0 for a H(m) = |m− ρ̄0|
we have ∆ ≤ −µ0H(m).
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Mitosis - structured by age

Return

λ0N(a) +N ′(a) = −B(a)N(a), N(0) = 2
∫∞
0
B(a)N(a) da (∗)

We have N(a) = N(0)e−
∫ a
0
(λ0+B(s)) ds with

N(0) = 2

∫ ∞

0

B(a)N(a) da = 2N(0)

∫ ∞

0

B(a)e−λ0a da

⇝ Existence of N ⇔ Existence of λ0 such that F (λ0) = 1 where

F (λ) = 2

∫ ∞

0

B(a)e−
∫ a
0
(λ+B(a)) da.

If B ∈ L∞ with
∫∞
0

B = +∞, F is a decreasing function and

lim
λ→0

F (λ) = 2 and lim
λ→∞

F (λ) = 0

Therefore, there exists a unique (λ0, N) solution of (∗) such that∫∞
0

N(a) da = 1.
The parameter λ0 is called the the Malthus parameter.
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Mitosis - structured by age

Return

λ0N(a) +N ′(a) = −B(a)N(a), N(0) = 2
∫∞
0
B(a)N(a) da (∗)

Adjoint problem

λ0ϕ(a)−ϕ′(a)+B(a)ϕ(a) = 2ϕ(0)B(a) (∗∗)

To find the adjoint problem, multiply (∗) by ϕ and integrate

0 =

∫ ∞

0
(λ0N+N

′
+BN)ϕ da =

∫ ∞

0
N(λ0ϕ−ϕ

′
+B) da−ϕ(0)N(0) =

∫ ∞

0
N(a)(λ0ϕ − ϕ

′
+ B − 2Bϕ(0)) da

The solution of (∗∗) is given by

ϕ(a) = 2ϕ(0)

∫ ∞

a

B(a′)e−
∫ a′
a (λ+B(s)) ds da′ with ϕ(0) such that

∫ ∞

0

Nϕ = 1.
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Properties of the fragmentation kernels

Return

k(x, y) = B(x)κ(x, y) with
∫
κ(x, y) dy = 1, κ(x, y) = 0 if y > x

The kernel k0(x, y) = G(x− y)(x > y) with
∫∞
0

G < +∞

B(x) =

∫ x
0
G(x − y) dy =

∫ x
0
G(y) dy,

∫ ∞

x
B(y)(κ(y, x) dy =

∫ ∞

x
G(y − x) dy =

∫ ∞

0
G(z) dz < ∞

The kernel k1(x, y) = G(y)(x > y) with
∫∞
0

G < +∞

B(x) =

∫ x
0
G(y) dy,

∫ ∞

x
B(y)κ(y, x) dy =

∫ ∞

x
G(y) dy < ∞

In both cases, G is a non negative function with

B(x) ≤ BM if

∫ ∞

0

G(y) dy < +∞

B is an increasing function such that B(0) = 0,

∃x− > 0 such that B(x) ≥ Bm > 0 ∀x > x− if

∫ ∞

0

G(y) dy ̸= 0
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