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Motivation

I When ultrasound passes through a biological tissue the energy of
the acoustic field is absorbed by the tissue and transformed into
heat.

I Ultrasound technology has a lot of applications in medicine,
surgery: cancer treatment, physical therapy: to improve pain
relief, collagen extensibility, muscle and tendon elasticity,
ligament repair.

I Ultrasound energy is computed from the acoustic pressure,
solution of the Helmholtz equation.

I Thermal diffusion of ultrasound is modeled with Pennes
equation, that relates the distribution of temperature with the
absorbed ultrasound energy.



Goals

I To compute the ultrasound induced heating of a biological tissue.

I To study the influence of parameters of the model in the heating
pattern.

I To solve the problem taking advantages of isogeometric analysis.



The mathematical-physical model

The physical domain

curved transducer emitting acoustic wave of constant amplitude

Two PDE equations:

I 3 layers tissue: skin, fat, muscle

I Helmholtz radiation problem, unknown: acoustic pressure

I Pennes heating problem, unknown: temperature



Acoustic radiation model

u(x, y) acoustic pressure field, solution of Helmholtz equation

−4u(x, y)− k2(x, y)u(x, y) = 0, (x, y) ∈ Ω

with mixed boundary conditions

u(x, y) = C on ΓD

∂u(x, y)

∂−→n
= 0 on ΓN

∂u(x, y)

∂−→n
+ i k(x, y)u(x, y) = 0 on ΓR

C is the amplitude of the
ultrasound, i imaginary unit.



Wavenumber

Wavenumber k(x, y) is the complex function

k(x, y) =
2π f

c(x, y)
− iµ(x, y)

where

I f frequency of the pulse emitted by the transducer

I c(x, y) ultrasound speed propagation and µ(x, y) attenuation
coefficient are piecewise constant functions depending on the
tissue.

The solution u(x, y) of the radiation problem is a complex function.



Bioheat transfer model

For (x, y) ∈ Ω and t ∈ [0, tf ], the temperature field T (x, y, t) is
solution of Pennes equation

ρ(x, y)cs(x, y)
∂

∂t
T (x, y, t)− ks(x, y)4T (x, y, t) = Q̃(x, y, t)

where

I Q̃(x, y, t) is the heat source.

I ρ(x, y) density, cs(x, y) specific heat, ks(x, y) thermal
conductivity are piecewise constant functions depending on the
tissue

Initial condition
T (x, y, 0) = Tb, (x, y) ∈ Ω

Dirichlet boundary condition

T (x, y, t) = Tb for all (x, y, t) ∈ ∂Ω× [0, tf ]

where Tb is the blood temperature.



Bioheat transfer model

Assumptions

I The heat source Q̃(x, y, t) is derived from the intensity of the
acoustic pressure field u(x, y), computed as solution of Helmholtz
equation.

I We assume that the ultrasound is applied in the interval [0, ts]
with ts < tf , hence

Q̃(x, y, t) =

{
Q(x, y) for 0 ≤ t ≤ ts

0 for ts < t ≤ tf

where

Q(x, y) = µ(x, y)
|u(x, y)|2

ρ(x, y)c(x, y)



So far...

The model: uncoupled system of Helmholtz-Pennes equations

−4u− k2u = 0

ρcs
∂

∂t
T − ks4T = Q̃

u(x, y) acoustic pressure
T (x, y, t) temperature

Q̃(x, y, t) heat source, computed in terms of u(x, y)
k(x, y), ρ(x, y), cs(x, y), ks(x, y) are piecewise constant functions

Now...

Numerical solution

I Helmholtz: discretizing spacial variables with isogeometric
analysis (IgA).

I Pennes: Lines method with isogeometric analysis.



Isogeometric method



Isogeometric Analysis, IgA

I Is an active and relatively new research area introduced in 2005
in the seminal paper of Hughes and co-workers: Isogeometric
analysis: CAD, finite elements, NURBS, exact geometry and
mesh refinement

I 2009 appears the first book: Isogeometric analysis: toward
integration of CAD and FEA, J.A. Cottrell, T.J. Hughes, Y.
Bazilevs.



Isogeometric Analysis

I The name Isogeometric Analysis reflects the philosophy of the
method: the same basic functions are used to describe the
domain geometry and the approximated solution of Partial
Differential Equations.

I IgA can be considered as an extension of the Finite Element
Methods (FEM).

I FEM and IgA approximate the solution of PDE using piecewise
polinomial functions.

IgA has two basic advantages over classical FEM:

I The boundary of the physical domain is represented exactly.

I The approximated solution of the PDE is smoother with one or
several continuous derivatives.
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IgA method: B-spline functions

1. IgA is based on the use of B-spline functions, which are piecewise
polynomial functions.

2. The definition of univariate B-splines requires the introduction of
an increasing sequence of knots tξ.

3. With sequence of n+ k knots tξ it is possible to define n
B-splines functions Bki,tξ(ξ), i = 1, ..., n of degree k − 1.

4. While classical FEM Lagrange functions are only C0 continuous,
B-splines are functions with several continuous derivatives.

Quadratic FEM Lagrange
functions
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IgA method: tensor product B-spline functions
Given two sequences of knots tξ and tη both in [0, 1], tensor product
B-spline functions of degree k1 − 1 in ξ and k2 − 1 in η are defined as:

Bi,j(ξ, η) := Bk1
i,tξ

(ξ)Bk2j,tη (η), 0 ≤ ξ ≤ 1, 0 ≤ η ≤ 1

i = 1 . . . n, j = 1 . . .m

B4,tξBm,tη B5,tξB4,tη

Bn,tξB2,tη Bn,tξBm,tη

Some tensor product biquadratic B-splines functions



IgA method: parametrization of physical domain

I The computation of a mesh in FEM is substituted in IgA by the
construction of a parametrization of the physical domain Ω:

F(ξ, η) : Ω̂ = [0, 1]× [0, 1]→ Ω

such that
I F transforms ∂Ω̂ in ∂Ω.
I F must be injective.
I F is a tensor product B-spline function

F(ξ, η) =

nF∑
i=1

mF∑
j=1

Pi,jB
k1

i,tξ
(ξ)Bk2

j,tη (η)

where Pi,j are the (unknown) control points.



IgA method: parametrization of physical domain

Current research area: Given Ω, how to compute the control points
Pi,j ∈ R2 to obtain a “good” parametrization?

I The image of a uniform mesh in [0, 1]× [0, 1] by parametrization
F(ξ, η) defines a (curvilinear) mesh in Ω.

I Isoparametric curves of a “good” parametrization F(ξ, η) are
almost orthogonal and uniformly distributed in Ω

I Deformations introduced by the map F(ξ, η) affect the accuracy
of the approximated solution computed with IgA.

Control points of F(ξ, η) Mesh in Ω defined by F(ξ, η)
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IgA solution of Helmholtz equation



Weak formulation

As in FEM, the first step to apply IgA is to obtain the weak
formulation of the PDE. Let

VH0 = {v : Ω→ C, v ∈ H1(Ω), v(x, y) = 0 for (x, y) ∈ ΓD}

Weak formulation of Helmholtz problem: Find u ∈ H1(Ω), with
u = C in ΓD such that,

a(u, v) = 0, ∀v ∈ VH0

where a(u, v) is the sesquilinear form

a(u, v) =

∫ ∫
Ω

∇u(x, y) · ∇v(x, y)− k(x, y)2u(x, y)v(x, y)) dΩ

+ i

∫
ΓR

k(x, y) u(x, y)v(x, y) dΓ



Galerkin discretization
Given the parametrization (x, y) = F(ξ, η) of Ω,

I Define the basis: select n and m and push forward the B-spline
functions

φi,j(x, y) := (Bi,j ◦ F−1)(x, y), i = 1, ...n, j = 1, ...,m

I Renumerate the B-splines functions defining

ψr(x, y) := φi,j(x, y)

with r = (j − 1)n+ i and i = 1, ...n, j = 1, ...,m.

I Define the finite dimensional space

VHh = span{ψr(x, y), r = 1, ..., NH}

where NH := n ·m and

I Galerkin: the approximated solution uh(x, y) ∈ VHh is given by,

uh(x, y) =
NH∑
r=1

αrψr(x, y)



Galerkin discretization

Unknown coefficients αr ∈ R are determined requiring that

a(uh, ψs) = 0, for s = 1, ..., NH

which means that,

NH∑
r=1

αr

∫ ∫
Ω

(
∇ψr(x, y) · ∇ψs(x, y)− k(x, y)2 ψr(x, y)ψs(x, y)

)
dΩ

+i

N∑
r=1

αr

∫
ΓR

k(x, y)ψr(x, y)ψs(x, y) ds = 0, s = 1, ..., NH

Unknowns coefficients αr ∈ C are computed from the previous
equations requiring additionally that uh = C in ΓD.



Linear system

Introducing the notation,

M = (Mr,s) =

∫ ∫
Ω

k2 ψrψs dΩ mass matrix

S = (Sr,s) =

∫ ∫
Ω

∇ψr · ∇ψs dΩ stiffness matrix

E = (Er,s) =

∫
ΓR

k ψrψs dΓ Robin matrix

for r, s = 1, ..., NH , the previous equations can be written as,

Aα = b

where
A = S−M + iE

α = (α1, ..., αNH )t is the vector of the unknowns.



Properties of matrix A
I It is large, complex and sparse. Iterative methods are suitable for

the solution of the linear system.
I It is symmetric but it is not Hermitian.
I It is not positive definite, we solve the system using GMRES.
I As k increases A is ill conditioned. This affect the velocity of

convergence of GMRES. Hence, it is necessary a preconditioner.
I Complex Shifted Laplacian preconditioner for constant k is given

by,
Aβ = A + iβ k2 M

(β > 0 parameter) is used to achieve the GMRES convergence.

Spy of A for bicubic B-spline approximation



IgA solution of Helmholtz equation: remarks

I Since the solution of Helmholtz eq. is highly oscillatory, in order
to obtain a good approximation uh(x, y), the dimension NH of
approx. space must be large (of order 105).

I If uh(x, y) and ûh(x, y) are the solution of Helmholtz eq. with

Dirichlet constants C and Ĉ = λC respectively then,

ûh(x, y) = λuh(x, y)

Hence, solving the radiation problem once, the solution
corresponding to pulses of different amplitudes are immediately
available.



IgA solution of Pennes equation



Weak formulation of Pennes equation

VP0 = {v : Ω→ R, v ∈ H1(Ω), v(x, y) = 0, for all (x, y) ∈ Γ := ∂Ω}

Weak formulation of bioheat problem: for any fixed t ∈ [0, tf ], find
T (x, y, t) ∈ H1(Ω) such that T (x, y, t) = Tb on Γ and

b(T, v) = q(v), ∀v ∈ v ∈ VP0

where b(T, v) is a bilinear form and q(v) is a linear form

b(T, v) =

∫ ∫
Ω

ρ(x, y) cs(x, y)
∂T (x, y, t)

∂t
v(x, y) dΩ

+

∫ ∫
Ω

ks(x, y)∇T (x, y, t) · ∇ v(x, y) dΩ

q(v) =

∫ ∫
Ω

Q̃(x, y, t) v(x, y) dΩ



Galerkin discretization

Given the parametrization (x, y) = F(ξ, η) of Ω,

I Define the basis: select ñ and m̃ and push forward the B-spline
functions

φi,j(x, y) := (Bi,j ◦ F−1)(x, y), i = 1, ...ñ, j = 1, ..., m̃

I Renumerate the B-splines functions defining

ψr(x, y) := φi,j(x, y)

with r = (j − 1)n+ i and i = 1, ...ñ, j = 1, ..., m̃.

I Observation: since the solution T (x, y, t) of Pennes equation is
smoother that the solution of Helmholtz equation, a good
approximation Th(x, y, t) can be computed from an approx. space
of dimension NP := ñ · m̃ much smaller (of order 103) than NH .



Galerkin discretization

I Define the finite dimensional space

VPh = span{ψr(x, y), r = 1, ..., NP }

I Galerkin: for any fixed t, the approximated solution
Th(x, y, t) ∈ VPh is given by,

Th(x, y, t) =

NP∑
r=1

αr(t)ψr(x, y)

where αr(t) r = 1, ..., NH are unknown functions.

I The set of indexes I = {1, ..., NP } is divided in two:

I = I0 ∪ Ig

I0 is the set of indexes of basic functions ψr vanishing ∀(x, y) in
Γ. Ig = {1, ..., NP }\I0



I Taking into account that B-spline functions define a partition of
unity, it is easy to show that boundary condition

Th(x, y, t) = Tb ∀(x, y) ∈ Γ and t ∈ [0, tf ]

holds, if we assign

αr(t) = Tb, for r ∈ Ig

Hence, only remain as unknowns functions αr(t), r ∈ I0.

I B-splines ψr(x, y), r ∈ I0 are a basis of the subspace of VPh :

VP0,h = {v ∈ VPh , such that v(x, y) = 0 for all (x, y) ∈ Γ}

I Galerkin formulation is obtained substituting in the weak
formulation v(x, y) by B-splines ψr(x, y), r ∈ I0 and Th(x, y, t) by

Th(x, y, t) =
∑NP

r=1 αr(t)ψr(x, y)



Ordinary Differential Equations (ODE) system

The result can be written in matrix form as,

M0 α
′

0(t) + S0 α0(t) = z(t)

where α0(t) is the vector of unknown functions αr(t), r ∈ I0
M0 and S0 are the stiffness and mass matrices given by,

M0 = (Mqr) =

∫ ∫
Ω

ρcsψqψr dΩ, q, r ∈ I0

S0 = (Sqr) =

∫ ∫
Ω

ks∇ψq · ∇ψr dΩ, q, r ∈ I0

and z(t) is a known vector with components zr(t) that depends on

q̃r(t) =

∫ ∫
Ω

Q̃(x, y, t)ψr(x, y) dΩ

Observation: The ODE system can be successfully solved with
classical Runge-Kutta 45 method.



Summarizing, IgA solution of Pennes equation is written as:

Th(x, y, t) =
∑
r∈I0

αr(t)ψr(x, y) +
∑
r∈Ig

Tbψr(x, y)

where the vector α0(t) of unknowns with components αr(t), r ∈ I0 is
computed solving the linear system of Ordinary Differential Equations

M0 α
′

0(t) = −S0 α0(t) + z(t)

with initial condition

α0(0) = (Tb, ..., Tb)



Numerical Results



Parameters

In all the numerical experiments the following parameters remain
fixed:

I radius of Ω, r = 0.133m

I curved transducer with semiaperture a = 0.01m

I frequency of the pulse f = 1MHz (in physiotherapy
0.7MHz ≤ f ≤ 3MHz).

I the pulse is turn off at ts = 30 s and tf = 60 s.

I tissue with 3 layers: skin, fat, muscle

tissue ρ(x, y) cs(x, y) ks(x, y) c(x, y) µ(x, y)
density specific thermal ultrasound attenuation

heat conduct. velocity
skin 1 200 3 590 0.23 1 558 24
fat 950 2 670 0.19 1 478 5.58

muscle 1 050 3 640 0.55 1 547 12.7



IgA solution of a typical problem



Typical problem: acoustic radiation

amplitude of the pulse C = 0.5× 106

curvature radius rl = 0.0672
Helmholtz eq. is solved with bicubic B-splines, NH = 308 502 dof.

Re(uh(0, y)) Im(uh(0, y)) |uh(0, y)|

I Cyan vertical lines represent the boundary between tissue layers.

I Re(uh(0, y)) and Im(uh(0, y)) are highly oscillatory functions.

I The focused effect produced by the curved lens is observed: the
relative maximum of acoustic pressure farthest from the
transducer is also the absolute maximum and its value is high (in
comparison with the value obtained for a plane transducer).



Typical problem: the heating

Pennes equation is solved with bicubic B-splines, NP = 2 594 dof.

Temperature along (a section of) y axis for different times

I Temperature is shown for points along y axis for fixed times:
5s, 10s, 20s, 25s, 30s

I The heating pattern is similar for all fixed times, but as time goes
by the difference between the temperature of the skin and muscle
increases.



Heating induced by ultrasound
amplitude of the pulse C = 0.5× 106

curvature radius rl = 0.0672
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Influence of some parameters in
tissue heating



Influence of pulse amplitude C on acoustic pressure

Fixed curvature radius rl = 0.0674

Absolute value of acoustic pressure along y axis

C = 3.5× 105 C = 4.0× 105 C = 4.5× 105

I The number and position of relative extremes of the acoustic
pressure are the same for all C.

I The absolute values of acoustic pressure increase with C.



Influence of pulse amplitude C on the temperature

Fixed curvature radius rl = 0.0674

Temperature along (a section of) y axis for different times

C = 3.5× 105 C = 4.0× 105 C = 4.5× 105

I The temperature field pattern is similar for all selected C .

I The maximum temperature is attained in the skin and the
minimum in the fat layer.

I Increasing the pulse amplitude C (from left to right) the
temperature increases for the same time.



Influence of lens curvature radius rl on acoustic pressure

Fixed pulse amplitude C = 5× 105

Absolute value of acoustic pressure along y axis

rl = 0.0672 rl = 0.0347 rl = 0.0243

Decreasing the curvature radius (from left to right)

I The point of maximum acoustic pressure is moving closer to the
transducer.

I The maximum acoustic pressure increases substantially.



Influence of lens curvature radius rl on temperature

Fixed pulse amplitude C = 5× 105

Temperature along (a section of) y axis for different times

rl = 0.0672 rl = 0.0347 rl = 0.0243

I In all cases the temperature increases as time increases.

I For small curvature radius (center, right) the maximum
temperature is attained at the point of maximum acoustic
pressure.

I For large curvature radius the maximum temperature is attained
in the skin.



Conclusions

For a curved transducer and a 3 layers tissue:

I The acoustic pressure field was computed solving Helmholtz
equation with IgA.

I The temperature field induced by the acoustic pressure was
computed solving Pennes equation combining the lines method
with IgA.

I A Matlab code based on the open source software GeoPDEs was
implemented.

I The influence of parameters of the pulse and the transducer on
the heating was studied. Numerical simulations show that:

I The amplitude C of the ultrasonic pulse doesn’t affect the heating
pattern. Increasing C the temperature increases mainly in the
vertical strip over the transducer.

I Decreasing the curvature radius of the transducer, the maximum
acoustic pressure increases substantially and also the temperature
in the vertical strip over the transducer.



Future research directions

I To include nonlinear effects in radiation and heating equations.

I To study the effect of the parametrization of the physical domain
in the accuracy of the solution of Helmholtz and Pennes
equations.

I To obtain a posteriori errors estimations in order to use adaptive
isogeometric analysis based on hierarchical splines.

I To study how the heating depends on the number and time
duration of pulse applications.

I Adaptation of the model to simulate induced heating in specific
physiotherapy applications based on ultrasound.
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