Lecture 4: Competition of phytoplankton population in
water column

[Ishii-Takagi (1983)| [Huisman et al. (1999)]

Up = PiUze — Uy +u(gr(L(x,t)) — dyu) € (0,L), t >0,
Up = flalap — QU +0(g2(I(2,t) —dyv)  x €(0,L), £ >0,
Opu=0,v =0 r=0,L, ,t>0,
u(z,0) = ug(x), ov(z,0) =uv(x) x € (0,L).

where pi; > 0 are diffusion rates (due to turbulence); a; € R are buoyancy /sinking rates;
d; > 0 are death rates,

g;(s) = —~ (Michaelis-Menton)

I(x,t) = exp (—/ (ko + u(y,t) + v(y,t) dy> (Lambert—Beer law).
0

Here ky models background attenuation and u + v models shading by the phytoplankton.

Referece: [Jiang-L.-Lou-Wang, STAM J. Appl. Math., 2019].



0.1 Single population
Let X € C([0,L]) and X, = C([0, L]; R,).

Up = Py — iy +u(gr(I(x,t)) — dyu) =
Opu =0 x=0,L, , t>0.
I(x,t) = exp (— [ (ko + u(y, t) dy) T
u(z,0) = ug(x) x

This nonlocal PDE generates a semiflow in ®; : X, — X, which is strongly positive
according to the special cone

K={peX: / oy)dy >0 forall 0 <z <L}
0
but not the usual cone

K={peX: ¢(x)>0 forall0 <z <L}
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Fic. 1. Numerical solution of (3.21), with D1 = 1, oy = 0, L = 100, fi(=z,t,©,0) =
g(exp(—koz — k1©)), where g(I) = ﬁ and ko = ki = d = 0.001, and initial condition
61,0 = X[o,/2](cos(2mz/L) + 1) + 1 and 620 = 1. Panels (a) and (c) are the population densi-
ties 0;(z,t) (i =1,2) at timest =0 and t = 10 resp.; Panels (b) and (d) are the initial cumulative
distribution functions of population densities ©;(z,t) = [ 0:(s,t)ds (i = 1,2) at times t = 0 and
t = 10. The first (resp. second) species is represented by the red/dotted line (resp. blue/solid line).

Exercise!

Int(K) = {uo €X : u(0)>0 and / uo(y)dy >0 for all z € (O,L].}
0



Definition 1. For ug, ug € X,

ug <g U = Ty — up € K.
ug <x Ug <~ ﬂo-UoGK\{O}.
ug < Up <~ Uy — Ug € IIlt(IC)

Theorem 2. The nonlocal PDE generates a semiflow in &, : X, — X which is strongly
positive according to the special cone K, i.e.

uo < Uo = u(,t) < u(-,t)  fort >0,
where u(x,t) = O (ug) and u(x,t) = $(ay).

This is equivalent to establishing a strong maximum principle (modulo an approxi-
mation argument).

Observation: U(z,t) := [ u(y,t)dy, so that , and note that
Us = il = U + Pla,UGe.t) = [ Fulo Uy, 1) dy
0

where F(z,s) = [, (g(e™=%) — d) dz.
Lemma 3. Let

(1)t > D(us)ay — us)y + [gle ™ 0* =0 v2) — djuy  x € [0,L], t >0,
pi(ug)y — aug >0 x=0,L, t>0,

and the reverse inequality holds for ui(x,t).
Suppose It* > 0 such that

up <gus for0<t<t
Uz — U1|t:t* ¢ Int(K),
then us(z,t) = wy(x,t) for x € [0, L] and t € [0,t*].

Proof. Let U(z,t) = [; wi(y,t) dy, then Uy < U, for [0, L] x [0, t*].and one of the following
holds at ¢t = t*:

(A) Uy(z*,t*) = Uy(z*,t*)  for some z* € (0, L], or
(B) (U1 — Us),(0,t*) = 0.



(A) Uy(z*,t*) = Uy(z*,t*)  for some z* € (0, L], or
(B) (U1 — Us).(0,¢*) = 0.
Define W = Uy — Uy, then
Wi — uWey + aW,

> F(z, Us(z, 1)) — F(z, Yi(x.1)) + / C(Euly, Us(y,8)) — Fuly, Un(y, 1)) dy

T Uz (y,t)
= h(:v,t)W+/ / koe Fov=2 g/ (e7kov=2)d | dy
0 Ul(yvt)

> h(x,t)W.

Case (A). W(z*,t*) = 0 for some x* € (0, L], then by classical strong maximum principle
applied to W,
W(L,t*) =0 which implies W;(L,t") <O0.

Note also that uW,, — aW,(L,t*) = 0. Hence,

L Uz(y,t)
/ / koe Fov=2g/(e kv dz | dy =0 ie. Uy = U,.
0 Ul(y>t)

Case (B). W,(0,t*) = (Uy — Us),(0,t*) = 0.
If 3t; ~ t* such that Case (A) holds, then done.
Otherwise, assume also

W=U,—U; >0 in (O,L]X(O,t*]
By Hopf’s boundary lemma, W,(0,¢*) > 0, which is a contradiction. O

Proof: ®; is strongly positive. On board.

Theorem 4 (Du-Hsu SIMA (2010)). Let Ay be pev of
e — by 4+ (g(e7) —d)p + A =0 inQ, by —ap =0 on O
(a) If \y >0, then u(xz,t) — 0 as t — oo for any ug >,# 0.
(b) If A1 <0, then there exists a unique positive equilibrium 0(x), and
u(z,t) — 0(x) ast— oo  for any ug >, % 0.
Proof. For (a) and if A\; > 0, use the supersolution %(x,t) := e *tp(x):

Ty > gy — Oy + [g(e P07 10 ™) — dJu



For (b), we use the other important result from Monotone Dynamical Systems.

Fact 1: Suppose (i) 0 is linearly unstable, and (ii) here exists M > 0 such that

limsup [Ju(-, t)||x < M.
t—r00

Then there exists at least one positive equilibrium.

Fact 2: If there exists at least one positive equilibrium, and that every positive equilibrium
is locally asymptotically stable, then there exists a unique positive equilibrium which is
globally attractive.

(eventual boundedness) Since A\; < 0, the trivial equilibrium is linearly unstable. For
boundedness, observe that since

—d < g(eka*f(f u(y,t) dy) —d<supg
is uniformly L*>° bounded, it follows that Harnack inequality holds, i.e.,
u(y,t) < Cu(z,t) forx,y €[0,L], t > 1.

Hence, one use analogy with ODE to prove eventual boundedness. Then we can use Fact
1 to conclude the existence of at least one positive equilibrium 6(z).

(every equilibrium 6(x) is linearly stable, if it exists) Suppose to the contrary that A < 0.
Let 1 > 0 and A be the pef and pev (apply Krein-Rutman with the special cone K)

:U’wa:r - Oé% + [g(IO> - d]l/) - 8($)g/(]0)]0(f0x w(y) dy) + )‘w =0 in [07 L]?
why —ap =0 forz =0, L.

where Iy = exp(—ko — [ 0(y) dy). We claim that A > 0 (i.e. 6 is stable).
Observe that 0(z)g'(Io)Io( [, ¢(y) dy) > 0 in (0, L], so that

phee — by + [g(Lo) — d] + M >0 in (0, L).
Since [ v > 0, we have sup¢) > 0.

We can then touch ¢ from above by cf, i.e. ¢ = cf — 1) satisfies

¢c>0 and min(chd —¢) =0

(0,1]

and
Wpzr — e + [g(1o) — d)p + Ao < Ach < 0.

Hence, ¢ > 0 in (0, L) (strong MP) and by Hopf’s lemma, either
either ¢,(0) >0=p(0) or .(L)<0=¢(L).
This contradicts the boundary condition pup, = ap. O]

Open Question: Addition of nutrient —- Here we assumed a eutrophic condition (where
nutrient is abundant is not limiting).



0.2 Selection for more buoyant phytoplankton species

U = Plsg — 01Uy +u(gr(I(z,1)) — diu) x € (0,L), >0,
Uy = HoUsy — Uy +0(go(I(x,t) — dyv)  x € (0,L), t >0,
Opu=0,v =0 r=0,L, ,t>0,
u(x,0) = ug(x), v(x,0)=1vy(x) x € (0,L)

where
I(x,t) = exp (—/ (ko + u(y,t) + v(y,t) dy> (Lambert—Beer law).
0

Here ky models background attenuation and u + v models shading by the phytoplankton.

Theorem 5. The following was established in [Jiang-L.-Lou- Wang, 2019].
(i) 1 = po, a1 < o then “more buoyant wins”.

(i) 1 < p2, a1 = az > [g(1) — d]L > 0; then “more diffusive wins".

(111) g < p2, a1 = agy < 0; then “less diffusive wins".

Remark 6. These results can be generalized to N-species competition under additional
assumptions [Cantrell-L. DCDS-B, 2021].

Open Question: For which a € [0, [g(1) — d]L] can we find some fi > 0 such that
E; is locally asymptotically stable whenever p; = fi, po # ji?

i.e. i1 is an evolutionarily stable strategy [Maynard Smith and Price, Nature, 1973|.

Open Question: Find a criterion for two-species to coexist.

Open Question: Multiple trophic level — nutrient/phytoplankton, and zooplankton
dynamics.

Proposition 7. The competition system generates a strongly positive semiflow with re-
spect to the cone:

K.:=K x (=K)
Proof. Omitted. O]



0.2.1 Two eigenvalue lemmas

Definition 8. For 1 > 0, « € R and h € C([0, L]), let Ay (p, v, h(+)) and ¢ be the pev
and pef of

ther + @ty + h(x)p + Mo =0 in (0,L), ¢, =0 foraz=0,L.
Lemma 9. If h is strictly decreasing, then 1,(z) < 0 in (0, L).
Proof.

pE )+ ) M =0 in (0,0), ], =0

Integrate
L
/ e /mplh(z) + M]de =0 so  h(z)+ A change sign.
0

i.e. there exists z € (0, L) such that

(eam/u¢x)x < 0 ln (O’ .TO), and (eax/uwg;)g; > O ln (m07 L)?

Lemma 10. If h is strictly decreasing, then On i (p, o, h) > 0.
Proof. Normalize [ e“*/#)?dx = 1. Then ¢/ = 0,1 satisfies

P, + 0ty + o + (h+ MY = =N and | _ =0
Multiply by e®*/#, and rewrite into self-adjoint form:
u(eo‘x/“w;)x + eo‘x/“(h + )Y = — e My, — eam/“)\/lw

Multiply by ¢, and integrate by parts,
0= —/eo‘m/“(z/zxw + \ip?) da

So \| = — [ e/t dx >0, O

Theorem 11. Let 1 = ps = p. If oy < e, and both semi-trivial equilibrium E; = (@, 0)
and E5(0,0) exist, then the more buoyant species u drives the species v to extinction.

Proof. Step 1. Ey = (0, [v) is unstable.
)\1 (/1‘7 Qg, hQ) < >\1 (/’LJ ai, h’2) =0
where hy(2) = g(exp(—kox — [ 0(y) dy)) — d is strictly decreasing in x.

Step 2. There is no positive equilibrium (u*, v*) such that «* > 0 and v* > 0.
Otherwise,

)\1(#, o, h*) =0= )\1(,&, a9, h*)
with h* = g(exp(—koz — [ —0%(u* 4+ v*) dy) — d being a strictly decreasing function. [
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