Mathematical modeling
of a growing tissue




Our basis: mechanical model for one tissue
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Refs : [Perthame Quiros Vazquez 2014] (power pressure law), Sophie Hecht’'s PhD works 2017-2020 (singular pressure law);
Sophie Hecht’s course
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. T s L [

otn+V - (nv) = nG(p), Growth and migration
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Pressure law (singular)

n(t,x) cell density of the tissue
v(t,x) velocity of the tissue
P(n) pressure due to congestion

G pressure-dependent growth function
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Our basis: mechanical model for one tissue

otn+V - (nv) = nG(p), Growth and migration

v = —Vp, Darcy’s law
n

1—n’

p = p(n) — € Pressure law (singular)

n(t,x) cell density of the tissue

v(t,x) velocity of the tissue

P(n) pressure due to congestion
n=1, in Q(t).

—Ap=G(p), in Q(t)
vaa = —(Vp-v)y, on 09Q(t):

G pressure-dependent growth function

Refs : [Perthame Quiros Vazquez 2014] (power pressure law), Sophie Hecht’'s PhD works 2017-2020 (singular pressure law);
Sophie Hecht’s course



Viscosity and rotational

Rotations : Clockwise/Counter-clockwise 0

we necessarily have a null rotational ! ’ - s St 0

Rotational movements in the posterior zone of the embryo

Using Darcy’s law

V — —VP,




Viscosity and rotational

Rotations : Clockwise/Counter-clockwise O
Using Darcy’s law
v = —Vp,
: ' | 0 500 1000 1500 0
we necessarlly have a null rotational ! Rotational movements in the posterior zone of the embryo

To reproduce the rotational movements observed in the embryo, and take into account the
(differential) viscosities of the tissues, we choose instead the Brinkman form:

—BAv+v=-Vp

B viscosity of the tissue



Multi-tissue models



Mechanical model for two tissues (1)

8{”1 T V » (nlvl) — anl(pl),
c%nz - V . (TLQ’UQ) — nQGQ (pg),
—B1Av1 + v1 = —Vpy,

p1 = pe(n1 + n2), n; : density of each tissue

v; . velocity of each tissue
p; . pressure of each tissue

De (n) — € 1fn- B; : viscosity of each tissue

P . congestion pressure, parametrized by € > 0
(; : growth fonctions




Mechanical model for two tissues (1)

o1 + V- (nqvr) = n1Gr(pr),
Onag + V - (nav2) = n2Galpa),
—[B1Av1 +v1 = —Vpx,
—[B2Avg + v9g = —Vpa,

- n; : density of each tissue
P1 = pe(nl + n2)7 : :
v; . velocity of each tissue
P2 = Pe(n1 + n2), p; : pressure of each tissue
Pe(n) = €77 B; : viscosity of each tissue
P . congestion pressure, parametrized by € > 0
(; : growth fonctions

0 mixing of the two tissues ?



Mechanical model for two tissues (1)

Propagated segregation: starting from initial segregated tissues
nininéni —0
we get that the tissues remain segregated for all times

nl(t7 ')n2(t7 ) =0, t>0.



we get that the tissues remain segregated for all times
ni(t,-)na(t,-) =0, t > 0.

ini .ini — O

ny n;

Mechanical model for two tissues (1)

Propagated segregation: starting from initial segregated tissues

This property is proved for equal viscosities, and numerically observed for different viscosities.
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Mechanical model for two tissues (1)

o1 + V- (nqvr) = n1Gr(pr),
Onag + V - (nav2) = n2Galpa),
—pf1Av1 +v1 = —Vpy,
—[B2Avg + v9g = —Vpa,

- n; : density of each tissue
P1 = pe(nl + n2)7 : :
v; . velocity of each tissue
P2 = Pe(n1 + n2), p; : pressure of each tissue
Pe(n) = €77 B; : viscosity of each tissue
P . congestion pressure, parametrized by € > 0
(; : growth fonctions

Segregation is propagated from the initial data (passive segregation).



PSM

NT
G .

Cells of NT and PSM types migrate from
the PZ towards the two other tissues

Mechanical model: origin of segregation ?

If the segregation is only propagated, then, what is its
origin ?

What happens at the interface with the PZ, which is a
mixed zone ?

Biological hypothesis: could it be that some active
segregation is at play ?

We keep our first model with passive segregation but
also build a model with active segregation in order to test

this hypothesis.



Mechanical model for two tissues (2)

oni +V-(nv)+aV-(niV(Any)) = niGi(p1),

n; : density of each tissue
p1 = pe(n1 + n2) + nagm(ning), ¢ TR .
v; . velocity of each tissue

P2 = pe(n1 + n2) + n1gm(ninz), p; : pressure of each tissue
pe(n) = € e B; : viscosity of each tissue

o —1 . congestion pressure, parametrized by € > 0
qm(,r.) — mrzl((]' e T)m _ ]_) Pe g P P y

(; : growth fonctions

gm - repulsion pressure, parametrized by m > 0

Active segregation a > 0 : regularization parameter

Ref : [Chertock Degond Hecht Vincent 2019] (bubble effect)



Numerical simulation
and comparison with data




Model 1 (fluid, passive segregation)
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Comparison between models: rotational
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Comparison between models: rotational
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Comparison between models

Fluid model,
Passive segregation

Fluid model,

Active segregation Q

Our model suggests that some active segregation is at play.



Diving deeper into the biological data

A Somites

One step forward towards biology:
- we add injection (duly quantified) : :
- other parameters taken from the biological literature
Somites
 PSM
Parameter Source Value Unit f— NT P
Py @D rsv [l 05 enes
NT viscosity () Michaut 2018 10*-10° Pa-s NT ipeotion seae ke
t n
PSM viscosity (B;) et 10¢ - 10° Pa-s
Proliferation rate of the
NT (g:) Bénazéraf 2017 1/10.83 1/ hour
Proliferation rate of the Tissue growth
PSM (g2 Bénazéraf 2017 1/8.75 1/ howr [ ]
Injection rate from the PZ Measured
into the NT (k) experimentally S Colls/ hour/ 10pm Cell proliferation Cell Injection
Injection rate from the PZ Measured
Into the PSM (Kew) experimentally - fon e i [ | | ]
Total maximal densit Cells/ , . (rear ) — " ANT ‘
0 m‘(ln““.) ensity Bénazéral 2017 2800 100 pm ()y ny + V- (1 ) = N1 01 ( 1 — ( " ) ) ) -+ 5 XI1Z3ANT Time_space'evo|ution of
Pressure sensing (e) Estimated free 1 Pa o\ @ — the NT density apd of the
parameter ding + V - (nav2) = nago (l - < = ) ) + ) X1Z5APSM: PSM density
Tissue friction with Mahadevan 2017, 10"- 10" Pa - o/ Nmazx + ( :
surroundings () Michaut 2018 —B1Avy + pvy = —Vp, Brinkman’s law for the NT
Growth sensitivity near Estimated free —BaAv. N iti
the maximal density (a) parameter . VA P80z tl,“ ’ v _— and PSM velocities
p=c ’ =M. Congestion pressure

Width of injection zone (5) “:‘:'mmw 214 pm Nmazx — N



Diving deeper into the biological data

One step forward towards biology:
- we add injection (duly quantified)
- other parameters taken from the biological literature

Validation of the model:
- with « natural » parameters, compared with wild type data (« healthy » embryo)

- with pathological parameters, compared with experiments in vivo (proliferation suppressed, ...)
In particular, the model reproduces well the differential elongation and the sliding between tissues.
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Diving deeper into the biological data

One step forward towards biology:
- we add injection (duly quantified)
- other parameters taken from the biological literature

Validation of the model:

- with « natural » parameters, compared with wild type data (« healthy » embryo)

- with pathological parameters, compared with experiments in vivo (proliferation suppressed, ...)
In particular, the model reproduces well the differential elongation and the sliding between tissues.

Output of the model: we perform a sensitivity analysis based on relevant outputs characterizing
shapes and velocities of the tissues. This analysis reveals the underestimated importance of
(differential) tissue proliferation in the embryogenesis.

Control No PSM cell proliferation No cell injection in the PSM
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Mathematical analysis:
a few words



Mechanical model for two tissues (2)

Ref : [Degond Hecht Romanos Trescases 2022]



Mechanical model for two tissues (2)

Can we compute the incompressible limit ?

pe(n)zelfn, e >0, m—ooand a—0

Ref : [Degond Hecht Romanos Trescases 2022]



Mechanical model for two tissues (2)

Can we compute the incompressible limit ?

pe(n)zelfn, e >0, m—ooand a—0

Formally, YES.

Ref : [Degond Hecht Romanos Trescases 2022]



Simulation before and at the limit
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Ref : [Degond Hecht Romanos Trescases 2022]



Analysis at the incompressible limit

Under simplifying assumptions (|n a bounded domain in 2D, statlonary case, linearly decreasing growth
function, smooth subdomains, given segregation pressure in L) and under an ellipticity condition, we prove:

. . 1
- well-posedness (weak solution in H')
- smoothness inside each subdomain
- equivalence with a transmission problem

- pressure jump at the interface (when the segregation pressure is null)

Ref : [Degond Hecht Romanos Trescases 2022]



Transmission problem

_IBIAV]. + Vg = 0,

{ B1l(Vvi)g, — (Vvi)qcl

on QF : (T3) _IBzsz +vo = 0.
U= [pf — %(v - v1), 17,
onTy :(C1) ( B2l(Vv2)o, — (Vv2)qel - 7 =Ilpy — 2-(V - v1), )17,
(1), = (va)qc, (v2)g; = (v2)qc,
B1l(Vvi)a, — (Vvi)qcl - 7 = [p3 — %(V - v2), )Y,
on T2 : (C2) ¢ B2l(Vv2)g, — (Vv2)qcl - 7 =[p3 — - (V - v2)q, )17,
(v1)o, = (va)ge, (v2)a, = (v2)qc

= [(pf — p3) + g?(v - v2)Q,) — %(v - v1)q, 17,
(P = P2) + g5 (V- v2)ap) = g (V- v, 17,

Bl[(vvl)ﬂl _ (vvl)Qzl '
onl : (C3) —
(vz)Qz, vy - U =vp - V.

B2l(Vva)q, — (Vv2)q,] - 7
(VI)Q1 — (Vl)Qz, (VZ)Q1 =

Ref : [Degond Hecht Romanos Trescases 2022]



The rigorous incompressible limit

For the passive segregation model:
- recently proven for viscous tissues in the whole domain
refs: [Perthame Vauchelet 2015] (one tissue); [Debiec Schmidtchen 2020] and [Debiec Perthame

Schmidtchen Vauchelet 2021] (multi-species, same viscosities)
- still open in a bounded domain
- still open for different viscosities

The active segregation model is another challenge..!



Conclusion



Conclusion

Summary

- We developed multi-tissue mechanical models with passive or enforced segregation
- We derived from it (formally) a geometrical model

- We analyzed the geometrical model: stationary state, pressure jump

- We simulated the model and compared it with biological data

Biological conclusions
- Suggests the existence of a segregation force
- Highlights the underestimated role of differential tissue proliferation rates



Conclusion

Summary

- We developed multi-tissue mechanical models with passive or enforced segregation
- We derived from it (formally) a geometrical model

- We analyzed the geometrical model: stationary state, pressure jump

- We simulated the model and compared it with biological data

Biological conclusions
- Suggests the existence of a segregation force
- Highlights the underestimated role of differential tissue proliferation rates

Perspectives

- More tissues, 3D, ...

- Diverse species

- Link with microscopic models
- Rigorous incompressible limit
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Thank you for your attention



Numerical schemes

Mechanical model (1):
Finite volume semi-implicit scheme - Matlab

Mechanical model (2):
Finite volume semi-implicit scheme, with a
relaxation method (order reduction) - Matlab

0.8 r

Geometrical model:
Finite elements - Freefem++
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