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It is now well known that neurons are the
key units of the animal nervous system
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In the human brain there are around 1012

neurons

In 1mm3 of cortical tissue, there are about

105 neurons

. – p.3/95



Better understanding how the brain
works is one of the great challenges of
today
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How can mathematics help achieve this

goal?
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• Mathematical models have been key

to understanding how neurons work

• And they are a fundamental tool in

current research
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In this course we will present different

models considering different scales of

observation
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The motivation is to collaborate as
mathematicians to better understand the
brain, but we also face a double
mathematical challenge:
• to understand the mathematical properties of the models

used by neuroscientists

• to develop new mathematical techniques that can be
applied to other models
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Teamwork
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Structure of the course

• Neuron’s biology

• Microscopic models

⋄ Hodgkin-Huxley model

⋄ Morris-Lecar model

⋄ FitzHugh-Nagumo model

⋄ Integrate-and-fire model

⋄ Stochastic differential equations (SDE)

• Partial differential equations (PDE)

⋄ Nonlinear Noisy Leaky Integrate and Fire (NNLIF)

⋄ Age-structured partial differential equations

• Open problems
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Structure of the course
We will study

• Different scales/systems to model the behaviour of
neurons populations

• Long time behaviour for some PDE models

⋄ Global existence versus blow-up

⋄ Number of equilibria

⋄ Stability of the equilibria

◦ Entropy method
◦ Discrete description for system with large transmission delay:

pseudo-equilibria sequence
◦ New technique using Volterra-type equation
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Structure of the course

Some general references:

• Books:

⋄ Ermentrout & Terman, Mathematical Foundations of Neuroscience, 2010

⋄ Coombes & Wedgwood, Neurodynamics, 2023

• PhD Thesis:

⋄ Alejandro Ramos-Lora, Microscopic and mesoscopic descriptions of the

Nonlinear Noisy Leaky Integrate-and-Fire model: long-time behavior and

numerical simulations, 2024

⋄ Ricarda Schneider, Analysis and numerical simulation of network of noisy

leaky integrate and fire neuron models, 2018

⋄ Nicolás Torres, Asymptotic behavior of solutions of the elapsed time model

for neural assemblies, 2021

• Review: Carrillo & Roux, Nonlinear partial differential equations in

neuroscience: from modelling to mathematical theory, 2025
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https://neurophysics.ucsd.edu/courses/physics_171/Ermentrout_Therman.pdf
https://link.springer.com/book/10.1007/978-3-031-21916-0
https://digibug.ugr.es/handle/10481/50091
https://hal.science/tel-03510733
https://arxiv.org/abs/2501.06015


Neuron’s biology
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• In the late 19th century, scientists debated the basic
structure of the nervous system:

⋄ it was a continuous network of fibers

⋄ it was composed of individual units
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• In the late 19th century, scientists debated the basic
structure of the nervous system:

⋄ it was a continuous network of fibers

⋄ it was composed of individual units

• Camillo Golgi developed a silver nitrate staining technique

(Golgi stain) that made neurons visible under the
microscope. And he supported the reticular theory, which
held that nerve cells formed a continuous web
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• In the late 19th century, scientists debated the basic
structure of the nervous system:

⋄ it was a continuous network of fibers

⋄ it was composed of individual units

• Camillo Golgi developed a silver nitrate staining technique

(Golgi stain) that made neurons visible under the
microscope. And he supported the reticular theory, which
held that nerve cells formed a continuous web

• Santiago Ramón y Cajal used Golgi’s technique and

arrived at a different conclusion: neurons are discrete,
individual cells that communicate through tiny gaps. His
work led to the formulation of the neuron doctrine, which
remains a cornerstone of modern neuroscience

• Golgi and Ramón y Cajal were jointly awarded the Nobel
Prize in Physiology or Medicine in 1906, "in recognition of

their work on the structure of the nervous system"
. – p.8/95



Drawing of the cells of the chick cerebellum by Santiago Ramón y Cajal, from

"Estructura de los centros nerviosos de las aves", Madrid, 1905 (Wikimedia Commons,

Public Domain)
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https://commons.wikimedia.org/wiki/File:CajalCerebellum.jpg


Neuron’s biology

• What is a neuron?

• Which is its function?

• How is a neuron?
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Neuron’s biology

A neuron is a cell of the nervous system

CONCEPT and is an electrically excitable cell that receives,

processes, and transmits information

through electrical and chemical signals

FUNCTION It passes information on to organism

PARTS Body, Axon and Dendrite

. – p.10/95



Neuron’s biology

Numerous neurons of the cerebral cortex

Image by the Max Planck Florida Institute for Neuroscience
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https://mpfi.org/neurons-to-networks/


Neuron’s biology

Motor neurons

Berkshire community college bioscience image library
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https://www.brainfacts.org/brain-anatomy-and-function/cells-and-circuits/2020/motor-neurons-041520


Neuron’s biology

Picture from the Wikimedia Commons

• Dendrites are thin structures that arise from the cell body, branching multiple

times, as a complex "dendritic tree"

• An axon (also called a nerve fiber) is a special cellular extension that arises from

the cell body at a site called the axon hillock
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Neuron’s biology

How do neurons connect?
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Neuron’s biology

Synapse

• From synaptein (Charles Scott Sherrington), from the Greek syn-
(together) and haptein (to clasp)

• Specialized junctions through which neurons signal to each
other and to non-neuronal cells such as those in muscles
or glands

• Crucial to the biological computations that underlie
perception and thought

• A huge number in human brain:

⋄ 1015 in young children

⋄ 1014 − 5× 1014 for adults

• It happens at the level of the membranes of the cells

. – p.10/95



What happens at a synapse?

• Presynaptic: tip of an axon

• Postsynaptic: dendrite or cell body

• Presynaptic neurons secrete neurotransmitters (active
zones)

• which bind to receptors from postsynaptic cells

• thanks to cell adhesion proteins in active zones

• and appears the postsynaptic density behind the
postsynaptic membrane

Picture from the Wikimedia Commons
. – p.11/95



What happens at a synapse?

Why are the neurotransmitters released?

Picture from the Wikimedia Commons . – p.11/95



What happens at a synapse?

• The neurotransmitters are chemical messengers which
transmit signals between neurons

• Stored in synaptic vesicles in the presynaptic axon
• They are released in response to a action potential
• Synaptic vesicles fuse with cell membrane
• And neurotransmitters diffuse and bind to receptors
• Receptors open nearby ion channels in the postsynaptic

zone
• and flow of ions in or out changes membrane potential of

postsynaptic neuron . – p.11/95



How to describe the neural activity
with mathematical models?
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• Neural activity in terms of the membrane potentials

• Mathematical models to describe the membrane potential
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Mathematical models to describe the membrane potential

Picture from the Wikimedia Commons

• Membrane potential:
V = Vinside −Voutside

• Typical values in the
range -40 mV to -70 mV

• Different ions:
Potassium, Sodium,
Chloride . . .

• Threshold potential
ց

Action potential

ց
Spikes
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Mathematical models to describe the membrane potential

Action potential

video

Picture from the Wikimedia Commons

• The membrane potential
starts out at -70mV
(Resting potential)

• A stimulus is applied

• The membrane potential
rapidly rises to a peak
potential

• Then drops below the
resting potential

• Remains in a refractory
period

• Resting potential is
reestablished

. – p.13/95

/home/maria/congresos/Neuronas/dibujosdeWikipedia/Action_Potential.gif


Mathematical models to describe the membrane potential

How to model membrane potential?

• Membrane potential is the electric potential difference
across a cell’s plasma membrane

• Membrane is polarized due to different charges inside and
outside of the cell

• Influences in the membrane potential:

⋄ Permeability of the different ions

⋄ Different concentrations of the different ions

⋄ Ion pumps

Membrane potential can be modeled as an electric circuit

. – p.13/95



Mathematical models to describe the membrane potential

Different scales

• Microscopic (Particle

Description): Very huge number

of equations

• Probability density description:

f (t, x, v) Particle density at time t

in variables (x, v)

(in kinetic theory: position x with

velocity v, in neuroscience, for

instance: conductance x and

voltage v)

• Macroscopic (Hydrodynamic De-

scription): System for the macro-

scopic quantities: momentum of

f (in kinetic theory: density,

momentum and temperature, in

neuroscience, for instance: firing

rate)

By the Max Planck Florida Institute for Neuroscience

−4 −3 −2 −1 0 1 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

v

p
(v

)

 

 

t=0

t=0.33

t=0.66

t=0.99

Electroencepalogram from the
Wikimedia Commons
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https://mpfi.org/neurons-to-networks/


Neurophysiological phenomena

Relationship between neurophysiological phenomena and
properties of the solutions of mathematical models

• Self-sustained oscillations are found

in many brain areas, like the vi-

sual cortex and the olfactory cor-

tex.

• Synchronization/asynchronization of

the network:

• blow-up

• periodic solutions

• asymptotic stability

• Epilepsy maybe related with blow up

• Multi-stability is related with:

• visual perception

• decision making
.
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How to propose mathematical
models to describe neurons?
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How to model membrane potential?

Neuronal model of L. Lapicque (1907)

by Roman Biernacki

With experiments on the frog sciatic nerve
(with platinum plated electrodes)

discovers

Membrane potential can be modeled as an electric circuit

. – p.16/95

https://images.app.goo.gl/QB5LfWVrM33cQvEY9


How to model membrane potential?

Picture from the Wikimedia Commons

• The circuit consists of

⋄ conductors or resistors,

representing the ion

channels

⋄ batteries, representing the

concentration gradients of

the ions

⋄ capacitors, representing

the ability of the

membrane to store charge

• Relationship between the charge

stored Q and potential V

Q = CV C is a proportionality constant

• Current is time derivative of

charge

• Kirchhoff’s current law states that

the total current into the cell must

sum to zero
. – p.16/95



How to model membrane potential?

Ohm’s Law:

V = RI

V Potential difference (Voltage): Volts

R Electrical Resistence: Ohms

I Electric Current: Amperes
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How to model membrane potential?

Ohm’s Law:

V = RI

V Potential difference (Voltage): Volts

R Electrical Resistence: Ohms

I Electric Current: Amperes

Rewritten as:

CV = I C = 1
R Electrical Conductance: Siemens
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How to model membrane potential?

Ohm’s Law:

V = RI

V Potential difference (Voltage): Volts

R Electrical Resistence: Ohms

I Electric Current: Amperes

Rewritten as:

CV = I C = 1
R Electrical Conductance: Siemens

Therefore, the evolution in time: C
dV

dt
=

dI

dt
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How to model membrane potential?

Ohm’s Law:

V = RI

V Potential difference (Voltage): Volts

R Electrical Resistence: Ohms

I Electric Current: Amperes

Rewritten as:

CV = I C = 1
R Electrical Conductance: Siemens

Therefore, the evolution in time: C
dV

dt
=

dI

dt
equivalently

Cm
dV

dt
= Iapply

(

=
dQ

dt

) Cm Capacitance: Faraday(= sS)

Iapply Applied Current: Amperes

Q Electric charge: Culombios
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How to model membrane potential?

Ohm’s Law:

V = RI

V Potential difference (Voltage): Volts

R Electrical Resistence: Ohms

I Electric Current: Amperes

Rewritten as:

CV = I C = 1
R Electrical Conductance: Siemens

Therefore, the evolution in time: C
dV

dt
=

dI

dt
equivalently

Cm
dV

dt
= Iapply

(

=
dQ

dt

) Cm Capacitance: Faraday(= sS)

Iapply Applied Current: Amperes

Q Electric charge: Culombios

Who is Iapply?
. – p.16/95



How to model membrane potential?

Ohm’s Law:

V = RI

V Potential difference (Voltage): Volts

R Electrical Resistence: Ohms

I Electric Current: Amperes

Rewritten as:

CV = I C = 1
R Electrical Conductance: Siemens

Therefore, the evolution in time: C
dV

dt
=

dI

dt
equivalently

Cm
dV

dt
= Iapply

(

=
dQ

dt

) Cm Capacitance: Faraday(= sS)

Iapply Applied Current: Amperes

Q Electric charge: Culombios

Iapply = −Ileakage − Iions + Iext . – p.16/95



Ordinary Differential Equations
(microscopic description)
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Microscopic level: different models

• Hodgkin-Huxley model

• Morris-Lecar model

• FitzHugh-Nagumo model

• Integrate-and-fire model
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Hodgkin-Huxley model

• Model propused by Alan Lloyd Hodking and Andrew
Fielding Huxley

• Both together with John Carew Eccles were awarded the

1963 Nobel Prize in Physiology or Medicine "for their
discoveries concerning the ionic mechanisms involved in
excitation and inhibition in the peripheral and central
portions of the nerve cell membrane"

• Their model describe the ionic mechanisms underlying
the initiation and propagation of action potentials in the

squid giant axon

• Video squid giant axon

. – p.19/95

https://www.youtube.com/embed/CXCGqwdtJ78?si=kh-_0lbWyrHDGj7A


Hodgkin-Huxley model

They considered experiments using the voltage-clamping
technique:

• The potential across the membrane is kept fixed at various
voltages

• The mechanisms in the cell then react to this potential, and
the short-time potential changes needed to counter them
are then measured

. – p.19/95



Hodgkin-Huxley model

Cm
dV

dt
= Iapply = −Ileakage − Iions + Iext
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Hodgkin-Huxley model

Cm
dV

dt
= Iapply = −Ileakage − Iions + Iext

• Ileakage(V) = gL(V −VL),

gL: leakage conductance (constant)

VL: resting potential

. – p.19/95



Hodgkin-Huxley model

Cm
dV

dt
= Iapply = −Ileakage − Iions + Iext

• Ileakage(V) = gL(V −VL),

gL: leakage conductance (constant)

VL: resting potential

• Iion(V) = INa(V)+ IK(V)

⋄ INa(V) = gNa(V −VNa),

gNa: Na conductance (depending on V)

VNa: reversal potential for Na

⋄ IK(V) = gK(V −VK),

gk: K conductance (depending on V)

VK: reversal potential for K

. – p.19/95



Hodgkin-Huxley model
Voltage-gated ion channels

• Ion channels can be thought of as having gates that open
or close to regulate the flow of ions through them

• We can consider that the gates follow a Markov process,
with transition rates from closed to open α, and from open
to closed β

Wikipedia movie

. – p.20/95

https://en.wikipedia.org/wiki/Ligand-gated_ion_channel


Hodgkin-Huxley model

Evolution on time of the fraction of open channels f is given by

d f

dt
= α(1− f )− β f = α− (α+ β) f =

f∞ − f

τ
,

with f∞ = α
α+β and τ = 1

α+β .

Moreover, transition rates depend on the potential difference V:

α = α0e−α̃V, β = β0e−β̃V α̃, β̃ > 0,

and then f∞(V) == 1

1+e

−(V−V0)
S0

with

S0 =
1

β̃− α̃
, and V0 = S0 ln

(

β0

α0

)

=
1

β̃− α̃
ln

(

β0

α0

)

.
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Hodgkin-Huxley model

Evolution on time of the fraction of open channels f is given by

d f

dt
= −β f + α(1− f ) = α− (α+ β) f =

f∞ − f

τ
,

We observe that f∞ = 1

1+e

−(V−V0)
S0

has a sigmoidal form and

therefore the gates can either be activating (if S0 > 0) or
inactivating (if S0 < 0). In this sense V0 can be considered as the
threshold and S0 the sensitivity of channel opening.

−10 −5 5 10

0.2
0.4
0.6
0.8

1

V

f∞(V)

V0 = 2, S0 = −2 (inactivating)

V0 = 0, S0 = 2 (activating)
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Hodgkin-Huxley model

Cm
dV

dt
= Iapply = −Ileakage − INa − IK + Iext

• Ileakage(V) = gL(V −VL),

• INa(V) = ḡNam3(V)h(V)(V −VNa)

• IK(V) = ḡKn(V)4(V −VK)

ḡNa and ḡK maximal value of the conductances

m and n activation variables, and h inactivation variable (between 0 and 1) of the ions

channels

dh

dt
= αh(V)(1− h)− βh(V)h

dm

dt
= αm(V)(1−m)− βm(V)m

dn

dt
= αn(V)(1− n)− βn(V)n

α(V) and β(V) are obtained experimentally using the voltage-clamping technique
. – p.21/95



Hodgkin-Huxley model

Cm
dV

dt
= −gL(V −VL)− ḡNam3h(V)(V −VNa)− ḡKn(V)4(V −VK)+ Iext

dh

dt
= αh(V)(1− h)− βh(V)h

dm

dt
= αm(V)(1−m)− βm(V)m

dn

dt
= αn(V)(1− n)− βn(V)n

ḡNa and ḡK maximal value of the conductances

m, n and h activation/inactivation variables (between 0 and 1) of the ions channels

• Nonlinear system unsolved analytically

• Describes the action potential

• To describe the behaviour of a large number of neurons
this model is very expensive

Exercise: Numerical study of the model

Hodgkin-Huxley, The J. of Physiology Vol. 116.4, 473-496 (1952)

Hodgkin-Huxley, The J. of Physiology Vol. 117.4, 500-544 (1952) . – p.21/95

https://pmc.ncbi.nlm.nih.gov/articles/PMC1392209/pdf/jphysiol01447-0106.pdf


Hodgkin-Huxley model
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Hodgkin-Huxley model

. – p.22/95



Hodgkin-Huxley model
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Hodgkin-Huxley model
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Simplifications of Hodgkin-Huxley model
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Morris-Lecar model

Wikimedia Commons

• In 1981 Catherine Morris
and Harold Lecar proposed a
simplification of the
Hodgkin-Huxley model

• Studing the barnacle muscle
fibers subjected to constant
current stimulation

. – p.24/95



Morris-Lecar model

Wikimedia Commons

• In 1981 Catherine Morris
and Harold Lecar proposed a
simplification of the
Hodgkin-Huxley model

• Studing the barnacle muscle
fibers subjected to constant
current stimulation

• They consider two channels also, but in this case are
Calcium and Potassium

• Again the activation variables are obtained experimentally

Morris-Lecar, Biophys. J. Vol. 35(1), 193-213 (1981)

. – p.24/95

https://www.biophysj.org/retrieve/pii/S0006349581847820


Morris-Lecar model

Cm
dV

dt
= −gL(V −VL)− ḡCam(V)(V −VCa)− ḡKn(V)(V −VK)+ Iext

dm

dt
= λm(V)(m∞(V)−m)

dn

dt
= λn(V)(n∞(V)− n)

m∞(V) and n∞(V) are the fraction of open calcium and potassium channels, respectively,

at steady state, and λm, λn the rate for opening of calcium and potassium channels,

respectively, and are obtained experimentally

. – p.25/95



Morris-Lecar model

Cm
dV

dt
= −gL(V −VL)− ḡCam(V)(V −VCa)− ḡKn(V)(V −VK)+ Iext

dm

dt
= λm(V)(m∞(V)−m)

dn

dt
= λn(V)(n∞(V)− n)

m∞(V) and n∞(V) are the fraction of open calcium and potassium channels, respectively,

at steady state, and λm, λn the rate for opening of calcium and potassium channels,

respectively, and are obtained experimentally

• Reduces the Hodgkin-Huxley system to 3 equations

• Reproduces the oscillations of the action potential

Morris-Lecar, Biophys. J. Vol. 35(1), 193-213 (1981)

. – p.25/95
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Morris-Lacar model
The authors propose a further simplification to reduce the system to two equations

Cm
dV

dt
= −gL(V −VL)− ḡCam∞(V)(V −VCa)− ḡKn(V)(V −VK)+ Iext

dn

dt
= λn(V)(n∞(V)− n),

where the calcium system is assumed to be so much faster than the potassium system

so it is assumed m(V) = m∞(V) (stationary)

We observe that the system can be written as

dV

dt
= f (V, n)

dn

dt
= g(V, n)

(-1)

. – p.26/95



Morris-Lacar model
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FitzHugh-Nagumo model
• Other simplification is the FitzHugh–Nagumo model,

developed by Richard FitzHugh in 1961

• and Jin-Ichi Nagumo et al. who created the equivalent

circuit the following year, describes a prototype of an
excitable system

• Previous models arise from the biophysics of neurons

• The origin of this model is phenomenological

• Phenomenological models only seek to capture the
essence of the behaviour

• They tend to be more mathematically manageable than the
others

. – p.27/95



FitzHugh-Nagumo model
Richard FitzHugh modified the van der Pol equations (he referred to these equations as

the Bonhoeffer–van der Pol equations) for an electrical circuit with a linear capacitor,

linear inductor, and nonlinear resistor in parallel

C
dV

dt
+ F(V)+ J =0

L
dJ

dt
=V,

where C is the capacitance, L the inductance, F(V) a nonlinear current depending on the

voltage, V , across the capacitor, and J the current through the inductor The system can

be written as a second-order differential equation with unknown V

CV′′(t)+ F′(V)V′(t)+
V(t)

L
= 0

which is a modification of the second order linear equation

x′′ + kx′ + x = 0,

where instead of the damping coefficient, k, is considered a function of the solution . – p.28/95



FitzHugh-Nagumo model

C
dV

dt
=V(V − a)(1−V)−w+ Iext =: f1(V,w)

dw

dt
=βV−w := f2(V,w)

V : proxy for the membrane potential
w : analogous the gating variables in the HH model
0 < a < 1, β,C > 0 and Iext ∈ IR

• Reduced system (2 equations) which models activation
and desactivation dynamics of a spiking neuron

Exercise: Analysis of this system of two equations

FitzHugh, Biophys. J. Vol. 1, 445-466 (1961)

Nagumo-Arimoto-Yoshizawa, Proc. IRE. Vol. 50, 2061-2070 (1961) . – p.29/95

https://www.sciencedirect.com/science/article/pii/S0006349561869026/pdf?md5=0f89b27e34cced0163c9a0191d8bd585&pid=1-s2.0-S0006349561869026-main.pdf&_valck=1
http://dx.doi.org/10.1109%2FJRPROC.1962.288235


FitzHugh-Nagumo model

. – p.30/95



Model for nerve fibre
• Previous models describe local behaviour of the electrical

activity

• They are appropriate for fibres with relatively little spatial
variation of biophysical properties, such as the squid giant
axon

• To be model more realistic we consider a cell that is
shaped as a long cylinder, or cable

• The current flow is along a single spatial dimension, x, the
distance along the cable

• The membrane potential depends on the x variable and
time t

• The cable equation is a partial differential equation that
describes how the membrane potential V(x, t) depends on
currents entering, leaving, and flowing within the neuron

. – p.31/95



Model for nerve fibre

Cable equation

C
∂V(x, t)

∂t
= D

∂2V(x, t)

∂x2
− Iion D > 0

**What units does D have?

Iion can be obtained from:
• Hodgkin-Huxley model

• Morris-Lecar model

• FitzHugh-Nagumo model

considering their right hand side in the equation for V

The system with FN model is used to study travelling waves in electrical activity, and

have been used to model electrical activity in the heart, for example

FitzHugh’s movie of nerve impulse propagation using computer animation techniques

available around 1960
. – p.31/95

https://www.youtube.com/watch?v=EzPZkIukU4k


Previous models are known as conductance-based models and
describe the membrane potential in terms of the ion channels

. – p.32/95



Previous models are known as conductance-based models and
describe the membrane potential in terms of the ion channels

These models describe the dynamics of the action potential accurate but they are very

difficult to use for a large number of neurons, since they are very expensive

. – p.32/95



Previous models are known as conductance-based models and
describe the membrane potential in terms of the ion channels

These models describe the dynamics of the action potential accurate but they are very

difficult to use for a large number of neurons, since they are very expensive

We present now Integrate-and-Fire models which

do not describe action potential but model the firing rate

. – p.32/95



Leaky integrate-and-fire model

Recall the equation for the membrane potential

Cm
dV

dt
= Iapply

considering Iapply = −IL + I

IL = gL(V −VL)

leakage current

• gL leak conductance

• VL resting potential
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Leaky integrate-and-fire model

Cm
dV

dt
= −gL(V −VL)+ I

Calling τm = Cm/gL ≈ 2ms
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Leaky integrate-and-fire model

τm
dV

dt
= −(V −VL)+ I

gL
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Leaky integrate-and-fire model

τm
dV

dt
= −(V −VL)+ I

gL

• There are firing times tspike: V(tspike) = Vthreshold

• Inmediately after tspike the potential is reset: V(t+
spike

) = Vreset

• VL < Vreset < Vthreshold

• Typically VL ≈ −70mV, Vreset ≈ −60mV and Vthreshold ≈ −50mV

• Equilibrium: V∞ = VL +
I

gL

• If V∞ < Vthreshold there are no spikes
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Leaky integrate-and-fire model
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gL
= 10

. – p.34/95



Leaky integrate-and-fire model
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Leaky integrate-and-fire model
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Noise
Neurons live in a noisy enviroment
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Noise

• The above models describe a deterministic behaviour

• However opening and closing of channels is a probablistic
event

• A spontaneous release of neurotransmitters occurs,
leading to a random bombardment of small depolarizations
and hyperpolarizations

• Noise in neural systems has been the subject of research
since the early 1960s

See G. Bard Ermentrout & David H. Terman Mathematical Foundations of Neuroscience

and references therein for further details
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Leaky integrate-and-fire model with noise

τm
dV

dt
= −(V −VL)+

I

gL

+

White noise

dV = τm

(
I

gL
− (V −VL)

)

dt+ σdBt

We can simulate that stochastic system with this scheme

Vn+1 = Vn + τm

(

I

gL
− (Vn −VL)

)

dt+ σ
√

dtN(0, 1)
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Leaky integrate-and-fire model with noise

The noise allows neurons to fire in the presence of subthreshold
inputs

If a current is applied that will not cause the deterministic model to fire, the addition of

zero mean noise can induce the neuron to fire

. – p.37/95



Leaky integrate-and-fire model with noise
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Leaky integrate-and-fire model with noise
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Leaky integrate-and-fire model with noise
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Leaky integrate and fire model with interaction

How to take into account the interaction between neurons?

Cm
dV
dt = −gL (V −VL)

+
Interactions

Cm
dV
dt = −gL (V −VL)+ I(t)

• I(t): Interactions of the neuron with the network (synapse)

• No constant input
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Leaky integrate and fire model with interaction

Cm
dV
dt = −gL (V −VL)+ I(t)

• I(t) = JE
∑CE

i=1

∑

j δ(t− ti
Ej
− d)− JI

∑CI

i=1

∑

j δ(t− ti
I j
− d)

⋄ E, I: Excitatory, Inhibitory neurons

⋄ JE, JI: strength of the synapses

⋄ CE, CI: total number of presynaptic neurons

⋄ ti
Ej
, ti

I j
: times of the jth-spike coming from the ith-presynaptic neuron

⋄ d: transmission delay

• The incoming synaptic current is a stochastic process

• Noisy leaky integrate and fire model
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Partial Differential Equations
(Probability density description-mesoscopic description)

Mean-field models

. – p.39/95



• What is the behaviour of a large number of neurons?

• Mesoscopic description in terms of density of neurons

• The unknown, p, is the probability of finding a neuron at

time t
⋄ with voltage v
⋄ with ’state’ s. ’state’ is the time elapsed since last spike

⋄ . . .

• If the number of neurons is very large, is p a solution to
any equation?

• If the answer is yes, the equation is called a mesoscopic o
mean-field
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Mesoscopic models

Advantages of mesoscopic models

• Drastic reduction of the number of equations

• The mesoscopic equation is easier to study than the
microscopic system

• The computational cost to numerically solve the
mesoscopic equation is lower than that required to solve
the macroscopic system

• It is possible to obtain macroscopic quantities

Mean field limits for ’particles’ systems, where particles could be:

• Physics: gases, electrons, . . .

• Biology: cells, virus, . . .

• Economy: agents in a market, . . .
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Mesoscopic models

Example 1

Particle system

Cm
dVi

dt
= I i = 1, . . . ,N

The density of neurons p(t, v) satisfies

Cm∂tp+ I∂vp = 0

which is independent on N, so the limit equation with N→∞ is the same equation

For each i: Vi(t) =
Vi(0)+It

Cm
, therefore p(Vi(t), t) = p(Vi(0), 0)

0 =
dp(Vi(t), t)

dt
= ∂tp(Vi(t), t)+

I

Cm
∂vp(Vi(t), t) = 0
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Mesoscopic models

Example 2

Particle system

Cm
dVi

dt
= I − gVi i = 1, . . . ,N

Mesoscopic model

Cm∂tp+ ∂v
(
(I − gv)p

)
= 0

. – p.40/95



Mesoscopic models

With noise

• Particle systems is a stochastic system

• Probability density of neurons is the density of a stochastic
process

• Does the probability density of neurons become
deterministic as the number of neurons tends to ∞?
(propagation of chaos)

• If the case, does it satisfy a PDE?

Example

Particle system:
dVi
dt = σdBi

t i = 1, . . . ,N

Mesoscopic model: ∂tp− σ2

2 ∂
2
vp = 0
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Some PDE models

The unknown, p, is the probability of finding a neuron at time t

• If spike trains follow Poisson processes{ Nonlinear
Fokker-Planck equations

⋄ p(v, t) is the probability of finding a neuron at time t
with voltage v

. – p.41/95



Some PDE models

The unknown, p, is the probability of finding a neuron at time t

• If spike trains follow Poisson processes{ Nonlinear
Fokker-Planck equations

⋄ p(v, t) is the probability of finding a neuron at time t
with voltage v

Brunel-Hakim, Neural Comp. Vol. 11, 1621-1671 (1999)

Mattia-Del Giudice, Phys. Rev. E, Vol. 66, 051917 (2002)

Renart-Brunel-Wang, Mathematical Biology and Medicine Series (2004)

Sirovich-Omurtag-Lubliner, Network: Computation in Neural Systems, Vol. 17, 3-29, (2006)

Liu-Wang-Zhang-Zhou, Siam J. Math. Anal. Vol54(1), (2022)

Jabin-Zhou, preprint 2023 . – p.41/95

http://www.mitpressjournals.org/doi/abs/10.1162/089976699300016179
http://neural.iss.infn.it/Papers/MattiaDelGiudicePRE2002.pdf
http://130.203.133.150/viewdoc/summary?doi=10.1.1.147.8283
http://www.ncbi.nlm.nih.gov/pubmed/16613792
https://doi.org/10.1137/20M1338368
https://arxiv.org/abs/2309.04046


Some PDE models

The unknown, p, is the probability of finding a neuron at time t

• If spike trains follow Poisson processes{ Nonlinear
Fokker-Planck equations

⋄ p(v, t) is the probability of finding a neuron at time t
with voltage v

• If spike trains follow point processes{ age-structured
partial differential equations
(Pakdaman-Perthame-Salort)

⋄ p(s, t) is the probability of finding a neuron at time t with

’state’ s. ’state’ is the time elapsed since last spike

. – p.41/95



Some PDE models

The unknown, p, is the probability of finding a neuron at time t

• If spike trains follow Poisson processes{ Nonlinear
Fokker-Planck equations

⋄ p(v, t) is the probability of finding a neuron at time t
with voltage v

• If spike trains follow point processes{ age-structured
partial differential equations
(Pakdaman-Perthame-Salort)

⋄ p(s, t) is the probability of finding a neuron at time t with

’state’ s. ’state’ is the time elapsed since last spike

Chevallier-C-Doumic-Reynaud-Bouret, M3AS, Vol. 25,14, 2669-2719, (2015)

Chevallier, Stochastic Processes and their Applications, (2017)

Quiñinao,Acta Applicandae Mathematicae, 146:29–55, (2016) . – p.41/95

http://www.worldscientific.com/doi/abs/10.1142/S021820251550058X
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Some PDE models

The unknown, p, is the probability of finding a neuron at time t

• If spike trains follow Poisson processes{ Nonlinear
Fokker-Planck equations

⋄ p(v, t) is the probability of finding a neuron at time t
with voltage v

• If spike trains follow point processes{ age-structured
partial differential equations
(Pakdaman-Perthame-Salort)

⋄ p(s, t) is the probability of finding a neuron at time t with

’state’ s. ’state’ is the time elapsed since last spike

Dumont, Henry and Tarniceriu give some relationships between
both PDE models

Dumont-Henry-Tarniceriu, J. Theor Biol, 406, 31-41. (2016)

Dumont-Henry-Tarniceriu, Journal of mathematical biology, 73(6-7), 1413-1436. (2016)

. – p.41/95

https://doi.org/10.1016/j.jtbi.2016.06.022
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Nonlinear Noisy Leaky
Integrate and Fire (NNLIF)

(Nonlinear Fokker-Planck equations)
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Neural phenomena

• Networks are composed of excitatory and inhibitory
neurons

• When the membrane potential reaches a threshold value
VF, the neurons emit an action potential (spike) and their
voltage values return to a reset value VR. (VR < VF)

• Between the emission and reception of the spikes among
neurons there are some transmission delays

• During a certain time (refractory period) the neurons do
not respond to stimuli

There is a family of NNLIF models in terms of the different
phenomena that take into account
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Neural phenomena
Let’s start with

• Networks are on average excitatory or inhibitory

• When the membrane potential reaches a threshold value
VF, the neurons emit an action potential (spike) and their

voltage values return to a reset value VR. (VR < VF)

• Between the emission and reception of the spikes among
neurons there are some transmission delays

• During a certain time (refractory period) the neurons do
not respond to stimuli

. – p.43/95



Noisy Leaky Integrate-and-fire model
NLIF Model

• I(t): Interactions of the neuron with the network (synapse)

. – p.44/95



Noisy Leaky Integrate-and-fire model
NLIF Model

• I(t): Interactions of the neuron with the network (synapse)

• I(t) = JE
∑CE

i=1

∑

j δ(t− ti
Ej

)− JI
∑CI

i=1

∑

j δ(t− ti
I j

)

⋄ E, I: Excitatory, Inhibitory neurons

⋄ JE, JI: strength of the synapses

⋄ CE, CI: total number of presynaptic neurons

⋄ ti
Ej
, ti

I j
: times of the jth-spike coming from the ith-presynaptic neuron
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Noisy Leaky Integrate-and-fire model
NLIF Model

• I(t): Interactions of the neuron with the network (synapse)

• I(t) = JE
∑CE

i=1

∑

j δ(t− ti
Ej

)− JI
∑CI

i=1

∑

j δ(t− ti
I j

)

⋄ E, I: Excitatory, Inhibitory neurons

⋄ JE, JI: strength of the synapses

⋄ CE, CI: total number of presynaptic neurons

⋄ ti
Ej
, ti

I j
: times of the jth-spike coming from the ith-presynaptic neuron

• Stochastic process.-

⋄ Each neuron spikes according to a stationary Poisson
process with constant probability of emitting a spike
per unit time ν

⋄ All these processes are assumed to be independent
between neurons

⋄ µC = bν average value of the current (b = CE JE −CI JI)

⋄ σ2
C
= (CEJ2

E
+CI J2

I
)ν variance of the current

. – p.44/95



Noisy Leaky Integrate-and-fire model
Any typical neuron of the network:

dV = (−V +VL + µc) dt+ σC dBt

(µC = bν, σ2
C
= (CE J2

E
+CI J2

I
)ν,

Cm = gL = 1)

V(t−
spike

) = VF and V(t+
spike

) = VR,

tspike the firing time

Assuming:

• Diffusion approximation of the

synaptic current with the same mean

and variance as the Poissonian

spike-train process

• A network sparse random

connectivity

• Small synaptic strength compared

to the firing threshold

Brunel-Hakim, Neural Comp. Vol. 11, 1621-1671 (1999)

Renart-Brunel-Wang, Mathematical Biology and Medicine Series (2004)

Sirovich-Omurtag-Lubliner, Network: Computation in Neural Systems, Vol. 17, 3-29, (2006)

Mattia-Del Giudice, Phys. Rev. E, Vol. 66, 051917 (2002)
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Noisy Leaky Integrate-and-fire model
• Diffusion approximation (µC = bν, σ2

C
= (CE J2

E
+CI J2

I
)ν, Cm = gL = 1)

dV = (−V +VL + µc) dt+ σC dBt

• Firing rate: Probability of firing per unit time of the
Poissonian spike train

ν = νext +N(t− d)

N(t) mean firing rate of the network

• N(t) is computed as the flux of neurons across the
threshold or firing voltage Vthreshold = VF

• d is the transmission delay

Brunel-Hakim, Neural Comp. Vol. 11, 1621-1671 (1999)

Renart-Brunel-Wang, Mathematical Biology and Medicine Series (2004)

Sirovich-Omurtag-Lubliner, Network: Computation in Neural Systems, Vol. 17, 3-29, (2006)

Mattia-Del Giudice, Phys. Rev. E, Vol. 66, 051917 (2002)
. – p.45/95



NNLIF model with d = 0
∂p

∂t
(v, t)+

∂

∂v

[
h (v,N(t))p(v, t)

]− a (N(t))
∂2p

∂v2
(v, t) = δ(v−VR)N(t)

. – p.46/95
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NNLIF model with d = 0
∂p

∂t
(v, t)+

∂

∂v

[
h (v,N(t))p(v, t)

]− a (N(t))
∂2p

∂v2
(v, t) = δ(v−VR)N(t)

• v ∈ (−∞,VF] VR: Reset potential VF: Threshold potential

• h(v,N) = −v+ bN(t)

• a(N) = a0 + a1N a0 > 0, a1 ≥ 0
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NNLIF model with d = 0
∂p

∂t
(v, t)+

∂

∂v

[
h (v,N(t))p(v, t)

]− a (N(t))
∂2p

∂v2
(v, t) = δ(v−VR)N(t)

• v ∈ (−∞,VF] VR: Reset potential VF: Threshold potential

• h(v,N(t)) = −v+ b N(t) excitatory/inhibitory network (b>0 or b<0)

• a(N) = a0 + a1N a0 > 0, a1 ≥ 0 we generally consider a(N) = a = 1
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NNLIF model with d = 0
∂p

∂t
(v, t)+

∂

∂v

[
h (v,N(t))p(v, t)

]− a (N(t))
∂2p

∂v2
(v, t) = δ(v−VR)N(t)

• v ∈ (−∞,VF] VR: Reset potential VF: Threshold potential

• h(v,N(t)) = −v+ b N(t) excitatory/inhibitory network (b>0 or b<0)

• a(N) = a0 + a1N a0 > 0, a1 ≥ 0 we generally consider a(N) = a = 1

Boundary conditions

• p(VF, t) = 0

• p(−∞, t) = 0
• ∂p

∂v
(V−

R
, t)− ∂p

∂v
(V+

R
, t) =

N(t)
a(N(t))
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NNLIF model with d = 0
∂p

∂t
(v, t)+

∂

∂v

[
h (v,N(t))p(v, t)

]− a (N(t))
∂2p

∂v2
(v, t) = δ(v−VR)N(t)

• v ∈ (−∞,VF] VR: Reset potential VF: Threshold potential

• h(v,N(t)) = −v+ b N(t) excitatory/inhibitory network (b>0 or b<0)

• a(N) = a0 + a1N a0 > 0, a1 ≥ 0 we generally consider a(N) = a = 1

Boundary conditions

• p(VF, t) = 0

• p(−∞, t) = 0
• ∂p

∂v
(V−

R
, t)− ∂p

∂v
(V+

R
, t) =

N(t)
a(N(t))

• N(t) := −a
(

N(t)
)
∂p
∂v

(VF, t) ≥ 0 ⇐= Nonlinear system!

Firing rate Conservation of mass
∫ VF

−∞ p(v, t)dv = 1 Exercise

Brunel-Hakim, Neural Comp. Vol. 11, 1621-1671 (1999)

C-Carrillo-Perthame, The Journal of Mathematical Neuroscience, 1:7. (2011)

Delarue-Inglis-Rubenthaler-Tanré, Ann. Appl. Probab., 25(4), 2096-2133 (2015)
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NNLIF model with d > 0

∂p

∂t
(v, t)+

∂

∂v
[ h(v,N(t−d))
︸        ︷︷        ︸

transmission delay

p(v, t)]− a(N(t−d))
︸     ︷︷     ︸

transmission delay

∂2p

∂v2
(v, t)=δ(v −VR)N(t)

• v ∈ (−∞,VF] VR: Reset potential VF: Threshold potential

• h(v,N(t)) = −v+ b N excitatory/inhibitory network (b>0 or b<0)

• a(N) = a0 + a1N a0 > 0, a1 ≥ 0 we generally consider a(N) = a = 1

Boundary conditions

• p(VF, t) = 0

• p(−∞, t) = 0
• ∂p

∂v
(V−

R
, t)− ∂p

∂v
(V+

R
, t) =

N(t)
a(N(t−d))

• N(t) := −a
(

N(t−d)
)
∂p
∂v

(VF, t) ≥ 0 ⇐= Nonlinear system!

Firing rate Conservation of mass
∫ VF

−∞ p(v, t)dv = 1 Exercise

. – p.47/95



Analytical properties

• Blow up

• Transmission delay avoids blow up

• Existence results

• Steady states

• Long time behaviour

. – p.48/95



Blow up

. – p.49/95



Blow up

Theorem (C-Carrillo-Perthame, 2011) Assuming:

• h(v,N)+ v ≥ bN, 0 < am ≤ a(N) (−∞ < v ≤ VF and N ≥ 0)

• b > 0 average-excitatory network

If the initial data is concentrated enough around v = VF there are

no global-in-time weak solutions

. – p.50/95



Blow up

Theorem (C-Carrillo-Perthame, 2011) Assuming:

• h(v,N)+ v ≥ bN, 0 < am ≤ a(N) (−∞ < v ≤ VF and N ≥ 0)

• b > 0 average-excitatory network

If the initial data is concentrated enough around v = VF there are
no global-in-time weak solutions

The solutions blow up when ...

• For b fixed: the initial condition is concentrated enough

around VF

• For p0 fixed: b, the connectivity parameter, is large enough

Concentrated enough around VF

∫ VF

−∞
eµvp0(v) dv ≥ eµVF − eµVR

bµ
=: λ

choosing µ > max(
VF
am
, 1

b )

proof

Roux-Salort, 2021: All solutions blow-up if b is large enough
. – p.50/95



Blow up

Carrillo-González-Gualdani-Schonbek* analyze
the global existence of classical solutions (d = 0 and a = 1)

• For inhibitory networks: Global classical solutions

• For excitatory networks: Local well-posedness of classical
solutions

• Blow up criterium:

T∗ = sup {t > 0 : N(t) < ∞}

T∗: maximal existence time

⋄ For inhibitory networks: T∗ = ∞
⋄ For excitatory networks: there exist classical solutions

which blow up at finite time T∗ and N diverges

*Carrillo-González-Gualdani-Schonbek, Comm. in PDEs, Vol. 38(3), 385-409, (2013)

Delarue-Inglis-Rubenthaler-Tanré, The Annals of Applied Probability, 25(4), 2096-2133 (2015).

Delarue-Inglis-Rubenthaler-Tanré, Stoch. Proc. Appl., 125(6), 2451-2492 (2015) . – p.51/95
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Blow up
Blow-up

Distribution functions p(v, t) for a ≡ 1 and b = 3 at different times
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Delay avoids the blow-up

∂p

∂t
(v, t)+

∂

∂v

[
h (v,N(t))p(v, t)

]− a (N(t))
∂2p

∂v2
(v, t) = δ(v−VR)N(t)

• v ∈ (−∞,VF]

• h(v,N(t)) = −v+ bN

• a(N) = a0 + a1N a0 > 0, a1 ≥ 0

. – p.52/95



Delay avoids the blow-up

∂p

∂t
(v, t)+

∂

∂v

[
h (v,N(t−d))p(v, t)

]− a (N(t−d))
∂2p

∂v2
(v, t) = δ(v−VR)N(t)

• v ∈ (−∞,VF]

• h(v,N(t−d)) = −v+ bN(t−d)

• a(N(t−d)) = a0 + a1N(t−d) a0 > 0, a1 ≥ 0

d ≥ 0 is the transmission delay

C-Schneider, ESAIM: M2AN, Vol 52(5), 1733-1761, (2018)

C-Roux-Salort-Schneider, Commun Part Diff Eq, Vol 44(12), 1358-1386 (2019)
. – p.52/95

https://doi.org/10.1051/m2an/2018014
https://www.tandfonline.com/doi/abs/10.1080/03605302.2019.1639732


Delay avoids the blow-up

a ≡ 1 and b = 0.5

d = 0 d > 0

. – p.52/95



Delay avoids the blow-up

Firing rate with delay, d > 0 for two different situations: b small
(only one steady state) and b large (no steady states)
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. – p.52/95

https://doi.org/10.1051/m2an/2018014
https://www.tandfonline.com/doi/abs/10.1080/03605302.2019.1639732


Delay avoids the blow-up

Difficulty to prove the global existence

• Inhibitory case: The criterium for the maximal time of

existence directly derives that the firing rate is uniformly
bounded for every time, obtaining the global existence of
solution

• Excitatory case: The previous procedure is not possible,

since the firing rate sometimes is not uniformly bounded.

C-Roux-Salort-Schneider, Commun Part Diff Eq, Vol 44(12), 1358-1386 (2019)

Carrillo-González-Gualdani-Schonbek, Comm. in PDEs, Vol. 38(3), 385-409, (2013)

Carrillo-Perthame-Salort-Smets, Nonlinearity 28 3365 (2015) . – p.52/95

https://www.tandfonline.com/doi/abs/10.1080/03605302.2019.1639732
http://www.ma.utexas.edu/users/gualdani/Pdf/CGGS.pdf
http://iopscience.iop.org/article/10.1088/0951-7715/28/9/3365/meta


Delay avoids the blow-up

Proof of the global existence of solution (d > 0)

1. Rewriting as a Stefan like problem

2. Local existence by means of

• Integral formulation

• Fixed point theorem

3. Key result: Maximal time of existence

4. super solutions and global existence result

C-Roux-Salort-Schneider, Commun Part Diff Eq, Vol 44(12), 1358-1386 (2019)

. – p.52/95

https://www.tandfonline.com/doi/abs/10.1080/03605302.2019.1639732


Steady states
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Steady states
We will focus on the case of a(N) = a constant

∂p

∂t
(v, t)+

∂

∂v

[
(−v+ bN(t−d)) p(v, t)

]− a
∂2p

∂v2
(v, t) = δ(v−VR)N(t)

p∞ steady state satisfies

∂

∂v

[

(v− bN)p+ a
∂

∂v
p(v)+NH(v −VR)

]

= 0

in the sense of distributions, with H being the Heaviside func-

tion

. – p.54/95



Steady states

Therefore,

(v− bN∞)p∞ + a
∂p∞
∂v
+N∞H(v−VR) = C

. – p.54/95



Steady states

Therefore,

(v− bN∞)p∞ + a
∂p∞
∂v
+N∞H(v−VR) = C

Definition of N∞ + Dirichlet boundary condition =⇒ C = 0

Then (easy exercise)

p∞(v) =
N∞

a
e−

(v−bN∞)2

2a

∫ VF

v
e

(w−bN∞)2

2a H[w −VR]dw

. – p.54/95



Steady states

p∞(v) =
N∞

a
e−

(v−bN∞)2

2a

∫ VF

max(v,VR)
e

(w−bN∞)2

2a dw

To determine p∞ we need to know N∞

. – p.54/95



Steady states

p∞(v) =
N∞

a
e−

(v−bN∞)2

2a

∫ VF

max(v,VR)
e

(w−bN∞)2

2a dw

Using the conservation law,
∫ VF

∞ p∞(v) dv = 1, we obtain the

following implicit equation for N∞

a

N∞
=

∫ VF

−∞

[

e−
(v−bN∞)2

2a

∫ VF

max(v,VR)
e

(w−bN∞)2

2a dw

]

dv

. – p.54/95



Steady states

Linear case (b = 0)

a

N∞
=

∫ VF

−∞

[

e−
v2

2a

∫ VF

max(v,VR)
e

w2

2a dw

]

dv

and there is unique stationary state p∞ given by

p∞(v) =
N∞

a
e−

v2

2a

∫ VF

max(v,VR)
e

w2

2a dw

with

N∞ =
a

∫ VF

−∞

[

e−
v2
2a

∫ VF

max(v,VR)
e

w2
2a dw

]

dv

. – p.54/95



Steady states

Non-linear case (b , 0)

Question: Number of solutions to

a

N
=

∫ VF

−∞

[

e−
(v−bN)2

2a

∫ VF

max(v,VR)
e

(w−bN)2

2a dw

]

dv ?

N =
1

I(N)
⇐⇒ NI(N) = 1 ⇐⇒ 1

N
= I(N),

with

I(N) :=
1

a

∫ VF

−∞

[

e−
(v−bN)2

2a

∫ VF

max(v,VR)
e

(w−bN)2

2a dw

]

dv

. – p.55/95



Steady states

With the change of variables:

z = v−bN√
a
, u = w−bN√

a
, wF =

VF−bN√
a
, wR =

VR−bN√
a

I(N) =

∫ wF

−∞

[

e−
z2

2

∫ wF

max(z,wR)
e

u2

2 du

]

dz.

And with the new change s = z−u
2 and s̄ = z+u

2

I(N) =

∫ ∞

0
e−s2/2e

− sbN√
a

e
s VF√

a − e
s VR√

a

s
ds

Thus we find the steady states if find N solution to




1

N
= I(N),

I(N) =
∫ ∞

0
e−s2/2e

− sbN√
a e

s VF√
a −e

s VR√
a

s ds.

(The details can be computed as exercise)
. – p.55/95



Steady states

Properties of I(N)

• I(0) < ∞
• For all integers k ≥ 1,

I(k)(N) = (−1)k

(

b
√

a

)k ∫ ∞

0
e−s2/2sk−1 (es wF − es wR) ds .

• b < 0: I is an increasing strictly convex function and
limN→∞ I(N) = ∞

• b > 0: I is a decreasing convex function and

limN→∞ I(N) = 0, limN→∞N I(N) =
VF−VR

b .

So when N→∞:

⋄ I(N) < 1
N if

VF−VR
b < 1

⋄ I(N) > 1
N if

VF−VR
b > 1

Exercise: prove these properties. (Hint: follow steps in C-Carrillo-Perthame, 2011) . – p.55/95



Steady states

Number of steady states in terms of connectivity parameter b

(C-Carrillo-Perthame, 2011):

• Average-inhibitory network (b < 0): there is a unique steady
state

• Average-excitatory network (b > 0):

⋄ High connectivity: there is no steady state

⋄ Small connectivity: there is a unique steady state

⋄ Between small and high connectivity: at least one or at
least two steady states

. – p.55/95



Steady states

Function 1
I(N)

is plotted against the function N for b < 0
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Steady states

Function 1
I(N)

is plotted against the function N for b > 0
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Steady states

Theorem Assume a(N) = a is constant

i) For b < 0 and b > 0 small enough there is a unique steady
state

ii) Under either the condition 0 < b < VF −VR or the condition

0 < 2ab < (VF −VR)2VR , there exists at least one steady
state solution

iii) If both 0 < 2ab < (VF −VR)2VR and b > VF −VR hold, then
there are at least two steady states

iv) There is no steady state under the high connectivity
condition b > max(2(VF −VR), 2VF I(0))

Exercise: Proof. (Hint: follow steps in C-Carrillo-Perthame, 2011)

. – p.55/95



Are the steady states
stable?

. – p.56/95



Entropy dissipation method

• Entropy dissipation method is a technique for studying the
long-term behaviour of some PDE systems

• The idea is to find decreasing functionals (Lyapunov
functionals)

• Originally it had a physical basis, physical entropy
(H-Theorem for Boltzmann equation (gases dynamics))

⋄ For physicists, the functional is increasing

. – p.57/95



Entropy dissipation method

• The convergence is proved in terms of this functional: the
distance to the equilibrium is given by the relative
entropy

• Can it be traumatic for mathematicians whose preferred

distance is L1 norm?

⋄ Sometime is posible to prove that convergence in terms of the entropy

implies convergence in L1

⋄ Csizár-Kullback-Pinsker inequality:

1

2
‖ f − g‖2

L1 ≤
∫

f log
f

g

H( f |g) :=
∫

f log
f
g relative entropy

(See these notes of Jose Cañizo for more details about this inequality)

. – p.57/95

https://canizo.org/page/28


Entropy dissipation method

Scheme

• Consider a entropy functional, E( f (t, ·)), which can be applied to any function,

solution or not of the equation, such that, if f is a solution of the system,

⋄
d

dt
E( f (t, ·)) = −D( f (t, ·))≤ 0,

D(( f , ·)) is called entropy production

⋄ it has a unique minimum at the equilibrium f∞(·)

• Consider the relative entropy E[ f | f∞](t) := E( f (t, ·))− E( f∞(·)) ≥ 0

• Try to control entropy production by the entropy (entropy-entropy production

inequality)

D( f ) ≥ Φ(E[ f | f∞])

with H 7→ Φ(H) some continuous function, strictly positive when H > 0

Finally

d
dt E[ f | f∞](t) = −D( f (t, ·)) ≤ −Φ(E[ f | f∞])

. – p.57/95



Entropy dissipation method

d

dt
E[ f | f∞](t) = −D( f (t, ·)) ≤ −Φ(E[ f | f∞])

• Example 1: Φ(H) = αH

d

dt
E[ f | f∞](t) =≤ −Φ(E[ f | f∞]) = −αE[ f | f∞]⇒ E[ f | f∞] ≤ E[ f | f∞](0)e−αt

• Example 2: Φ(H) = CH1+α, C, α > 0

Then the entropy going down like O(t−1/α) (polynomial rate of convergence to

equilibrium)

• Example 3: we study the linear NNLIF equation

. – p.57/95



Entropy dissipation method

Relative entropy

E(t) :=
∫ VF

−∞ p∞(v)G
(

p(v,t)
p∞(v)

)

dv

G convex function

• dE(t)
dt ≤ 0 Entropy production

• Control the entropy production in terms of the entropy

dE(t)

dt
≤ −µE(t), µ > 0

In this step Poincaré’s inequality (see these notes of Jose Cañizo) helps

(considering G(x) = (x− 1)2)

γ

∫ VF

−∞
p∞(v)

(

p(v, t)

p∞(v)
− 1

)2

dv ≤
∫ VF

−∞
p∞(v)

(

∂

∂v

p(v, t)

p∞(v)

)2

dv

• Gronwall’s inequality gives the result:

E(t) ≤ e−µtE(0), µ > 0
. – p.57/95

https://canizo.org/page/26


Case linear b=0

For any smooth convex function G : IR+ −→ IR

− d

dt

∫ VF

−∞
p∞(v)G

(

p(v, t)

p∞(v)

)

dv =

N∞

[

G

(

N(t)

N∞

)

−G

(

p(v, t)

p∞(v)

)

−
(

N(t)

N∞
−

p(v, t)

p∞(v)

)

G′
(

p(v, t)

p∞(v)

)]
∣
∣
∣
∣
VR

+a0

∫ VF

−∞
p∞(v) G′′

(

p(v, t)

p∞(v)

) [

∂

∂v

(

p(v, t)

p∞(v)

)]2

dv ≥ 0

Exercise: Proof

. – p.58/95



Case linear b=0

Theorem [Exponential decay] (C-Carrillo-Perthame)

Fast-decaying solutions verifying p0(v) ≤ C0p∞(v) for some

C0 > 0, satisfy

∫ VF

−∞
p∞(v)

(

p(v, t)− p∞(v)

p∞(v)

)2

dv ≤

e−2a0νt

∫ VF

−∞
p∞(v)

(

p0(v)− p∞(v)

p∞(v)

)2

dv.

(considering G(x) = (x− 1)2)

. – p.58/95



Case non linear b , 0

• C-Carrillo-Perthame: Numerical analysis

• Carrillo-Perthame-Salort-Smets: Local asymptotic stability
for stationary states for |b| small

• C-Roux-Salort-Schneider: Local asymptotic stability for
stationary states for |b| small and d > 0

Exercise: Compute d
dt

∫ VF

−∞ p∞(v)G
(

p(v,t)
p∞(v)

)

dv in the nonlinear

case (b , 0) (G convex smooth function)

Carrillo-Perthame-Salort-Smets, Nonlinearity 28.9 (2015): 3365.

C-Roux-Salort-Schneider, Commun Part Diff Eq, Vol 44(12), 1358-1386 (2019)
. – p.59/95

http://iopscience.iop.org/article/10.1088/0951-7715/28/9/3365/meta
https://www.tandfonline.com/doi/abs/10.1080/03605302.2019.1639732


Numerical results
Firing rates N(t) for a ≡ 1, d = 0
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What happens when the
connectivity is high?

dE(t)

dt
= −Positive (t)

︸         ︷︷         ︸

Linear part

+ 2b(N(t− d)−N∞)

∫ VF

−∞
p
∂

∂v

(

p(v, t)

p∞(v)

)

︸                                         ︷︷                                         ︸

nonlinear part: without sign

Considering G(x) = (x− 1)2 and controlling the nonlinear term with L2 estimates on N:

No answer using entropy method
• Without delay d = 0 and |b| small: Carrillo-Perthame-Salort-Smets, 2015

• With delay d > 0 and |b| small: C-Roux-Salort-Schneider, 2019

. – p.61/95



To answer the question, we first analyzed this other one

What happens after the blow-up
phenomenon?

. – p.62/95



PDE description: blow-up situations

Without delay
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After the blow-up
To answer we have to go back to the microscopic description

Any typical neuron of the network becomes

dV(t) = − (V(t)+ bN(t− d)) dt+
√

2adB(t),

B(t) the standard Brownian motion

V(t−
spike

) = VF and V(t+
spike

) = VR, with tspike the firing time.

. – p.64/95



After the blow-up
To answer we have to go back to the microscopic description

Any typical neuron of the network becomes

dV(t) = − (V(t)+ bN(t− d)) dt+
√

2adB(t),

B(t) the standard Brownian motion

V(t−
spike

) = VF and V(t+
spike

) = VR, with tspike the firing time.

• N(t) = e′(t)

• e(t) = limN→∞
1
N

∑N
j

∑

k 1{τ j

k
≤t}

the theoretical expected number of spike times by a typical
neuron

•
(

τ
j

k

)

k≥1
sequence of spike times

Delarue-Inglis-Rubenthaler-Tanré, Ann. Appl. Probab., 25(4), 2096-2133 (2015)

Delarue-Inglis-Rubenthaler-Tanré, Stoch. Proc. Appl., 125(6), 2451-2492 (2015)
. – p.64/95

http://www.sciencedirect.com/science/article/pii/S0304414915000186
http://www.sciencedirect.com/science/article/pii/S0304414915000186


After the blow-up

What happens after the blow-up phenomenon?
To answer we study the particle system numerically (C-RamosLora, 2021)

Sometimes systems tend to “plateau” distributions after the
blow-up, which means that the membranes potential tend to be

uniformly distributed in the interval (VR,VF)
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Numerical tests to set the number of neurons
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Numerical tests to set the number of neurons
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After the blow-up

System behaviour after the blow-up depends on the connectivity
parameter b:

• Weakly connected (b < VF −VR): Tends to its unique steady
state after blow-up

• Highly connected (VF −VR ≤ b): “Plateau” distributions appear
when synaptic delays are taken into account.

⋄ No steady states case: Tends to a “plateau” distribution

⋄ Two steady states case: Bistability between the steady
state with the lowest firing rate and the “plateau” state

⋄ The limiting case b = VF −VR: Tends to a "plateau"
distribution under blow-up situations, either without
synaptic delay or with a very small delay value. For a
high enough delay the system tends to the stationary
state

Relationship with physical solutions (Delarue-Inglis-Rubenthaler-

Tanré, 2015) C-RamosLora, CiCP 30, 820-850 (2021)
. – p.67/95

https://doi.org/10.4208/cicp.OA-2020-0241


Physical solutions for SDE model

At microscopic level the notion of solution was extended to
physical solutions (Delarue-Inglis-Rubenthaler-Tanré):

• Main difference: regularity of the expectation e(t):
⋄ Continuous for classical solutions

⋄ Can present certain positive jump discontinuities for physical solutions

• Neurophysiologically:
⋄ Classical notion: neurons only fire when they reach VF

⋄ Physical notion: neurons can fire if their membrane potentials are close to

VF

• Existence:
⋄ Non global existence for classical solutions (without delay)

⋄ Global existence even after the blow-up occurs for physical solutions

The notion of physical solution make sense for weakly connected network

(b < VF −VR), because neurons cannot fire more than once at the same

time

Delarue-Inglis-Rubenthaler-Tanré, Ann. Appl. Probab., 25(4), 2096-2133 (2015)

Delarue-Inglis-Rubenthaler-Tanré, Stoch. Proc. Appl., 125(6), 2451-2492 (2015)

. – p.68/95
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Numerical simulations

What happens after blow-up?

(Fixed parameters: VR = 1, VF = 2, a = 1)

. – p.69/95



Particle system description

Blow-up situation: b < VF −VR = 1, d = 0. Physical solution
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Particle system description

Blow-up situation: b > VF −VR = 1, d = 0. No physical solutions
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Under what situations do
“plateau” states appear?
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Particle system description:“Plateau” distributions

Limiting case: b = VF −VR video

 0

 2

 4

 6

 8

 10

 12

 0  0.5  1  1.5  2

N
or

m
al

iz
ed

 p
ar

tic
le

 d
en

si
ty

V

t=0.0026

t=0.0027

t=0.0028

t=0.0029

t=0.0030

 0

 1

 2

 3

 4

 5

 6

 0  0.5  1  1.5  2

N
or

m
al

iz
ed

 p
ar

tic
le

 d
en

si
ty

V

t=0.003

t=0.004

t=0.02

t=0.0460

t=0.058

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  0.5  1  1.5  2

N
or

m
al

iz
ed

 p
ar

tic
le

 d
en

si
ty

V

t=0.003

t=0.1

t=0.25

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  0.5  1  1.5  2

N
or

m
al

iz
ed

 p
ar

tic
le

 d
en

si
ty

V

t=0.058

t=0.1

t=0.25

Without delay With very small delay=0.0001
. – p.73/95

/home/maria/congresos/Neuronas/peliculas/meseta.html


Particle system description:“Plateau” distributions

“Plateau” states desappear for large delays if b = VF −VR
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Particle system description:“Plateau” distributions

b = 1.5 > VF −VR two steady states with delay
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Particle system description:“Plateau” distributions

b = 2.2 > VF −VR no steady states with delay
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Numerical simulations show
The notion of physical solution make sense for weakly connected network (b < VF −VR),

because neurons cannot fire more than once at the same time

What happens after system synchronization depends on the
connectivity parameter b:

• Without delay:

⋄ b < VF −VR: the system is reset to VR and tends to the
steady state

⋄ b > VF −VR: the system collapse and tends to a
“trivial” state.

⋄ b = VF −VR: the system tends to a “plateau” state.

• With delay:

⋄ b > VF −VR: System tends towards a “plateau”
distribution, even when there are no steady states

⋄ b = VF −VR: System tends to a “plateau” state, unless
the value of the delay is too large, in which case it
tends to the steady state

. – p.74/95



Numerical simulations show

Therefore:

• Physical solution tends to its unique steady state after
blow-up

• Limiting case b = VF −VR:

⋄ “Plateau” profile coincides with the stationary profile,
with N →∞.

⋄ System tends to:
◦ a "plateau" distribution under blow-up situations,

either without synaptic delay or with a very small
delay value

◦ the stationary state for a high enough delay

. – p.74/95



Pseudo equilibria

Discrete description for system with large transmission delay

Quick simulations give accurate information about the NNLIF system
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Pseudo equilibria: Motivation
∂p
∂t

(v, t)+ ∂
∂v

[
(−v+ bN(t− d))p(v, t)

]− a
∂2p

∂v2 (v, t) = δ(v−VR)N(t)

Steady states

∂

∂v

[
(−v+ bN∞)p∞(v)

]− a
∂2p∞
∂v2

(v) = δ(v−VR)N∞

Using boundary conditions and conservation of mass

p∞(v) =
N∞

a
e−

(v−b N∞)2

2a

∫ VF

max(v,VR)
e

(w−b N∞)2

2a dw,

where N∞ = 1
I(N∞) (Implicit equation for N∞)

I(N) := a−1

(
∫ VF

−∞ e−
(v−b N)2

2a

∫ VF

max(v,VR)
e

(w−b N)2

2a dwdv

)
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Pseudo equilibria: Motivation
Steady states

p∞(v) =
N∞

a
e−

(v−b N∞)2

2a

∫ VF

max(v,VR)
e

(w−b N∞)2

2a dw,

where N∞ = 1
I(N∞) (Implicit equation for N∞)

I(N) := a−1

(
∫ VF

−∞ e−
(v−b N)2

2a

∫ VF

max(v,VR)
e

(w−b N)2

2a dwdv

)
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Pseudo equilibria: Motivation
Pseudo equilibria

pN(v) =
Ñ∞

a
e−

(v−b N)2

2a

∫ VF

max(v,VR)
e

(w−b N)2

2a dw, N ∈ IR
+,

Ñ∞ = a

(∫ VF

−∞
e−

(v−b N)2

2a

∫ VF

max(v,VR)
e

(w−b N)2

2a dwdv

)−1

=
1

I(N)

This profile is the equilibrium of the linear equation with given N

∂p

∂t
(v, t)+

∂

∂v

[
(−v+ bN)p(v, t)

]− a
∂2p

∂v2
(v, t) = δ(v−VR)N(t)
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Pseudo equilibria: Motivation

Plateau distributions of simulations coincide with pseudo
equilibria, for N increasing.
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Pseudo-equilibria sequences
Pseudo-equilibria sequence

(C-Cañizo-RamosLora, 2024)

• Firing rates sequence: Given 0 ≤ N0

N0,∞ := N0 and Nk+1,∞ :=
1

I(Nk,∞)
k = 0, 1, 2, . . .

(Recursive equation Nk+1,∞ = f (Nk,∞) with f (x) := 1
I(x) )

Remark: Given p0 if N0 := −a∂vp0(VF) and N0 = N∞ then Nk,∞ = N∞

• Pseudo-equilibria sequence:

pk,∞(v) =
Nk+1,∞

a
e−

(v−bNk,∞)2

2a

∫ VF

max(v,VR)
e

(w−bNk,∞)2

2a dw.

These sequences are independent of the Fokker-Planck equation

and depend only on b, VR, VF

C-Cañizo-RamosLora,Phys. Rev. E 110 (2024) . – p.77/95

https://journals.aps.org/pre/abstract/10.1103/PhysRevE.110.064308


Pseudo-equilibria sequences
b > 0: Monotony of

{

Nk,∞
}

k≥0

• If N∗ is the only solution of NI(N) = 1 thus:

⋄ If N∗ ≤ N0 then
{

Nk,∞
}

k≥0
is a decreasing sequence which tends to N∗

⋄ If N0 ≤ N∗ then
{

Nk,∞
}

k≥0
is a increasing sequence which tends to N∗

• If NI(N) = 1 has not solution then
{

Nk,∞
}

k≥0
diverges

• If NI(N) = 1 has two solutions: N∗
1

and N∗
2

(N∗
1
< N∗

2
), thus:

⋄ If N0 ≤ N∗
1

then
{

Nk,∞
}

k≥0
is a increasing sequence which tends to N∗

1

⋄ If N∗
1
≤ N0 ≤ N∗

2
then

{

Nk,∞
}

k≥0
is a decreasing sequence which tends to N∗

1

⋄ If N∗
2
≤ N0 then

{

Nk,∞
}

k≥0
diverges

 0

 0.5

 1

 1.5

 2

 2.5

 0  0.5  1  1.5  2  2.5

1/
I(

N
)

N

b=0
b=0.5
b=1.5
b=2.1
b=2.5

see the precise statement of the theorem in

C-Cañizo-RamosLora,Phys. Rev. E 110 (2024)
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Pseudo-equilibria sequences

b < 0: Monotony of
{

Nk,∞
}

k≥0

There exists a value of the connectivity parameter b, b∗ < 0, such that:

• If b∗ < b ≤ 0 the sequence
{

Nk,∞
}

k≥0
tends to the unique solution of NI(N) = 1

• If b < b∗, there exist two values N−, N+, 0 ≤ N− < N+, such that the sequence
{

Nk,∞
}

k≥0
tends to the 2-cycle {N−,N+}
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Pseudo equilibria and solutions to NNLIF

For large delay, the NNLIF equation evolves as the pseudo
equilibrium sequence
We observe numerically:

• b > 0:

⋄ A unique steady: system tends to it

⋄ Two steady states: system tends to the steady state
with less firing rate or to a plateau distribution

⋄ Non steady states: system tends to a plateau
distribution

• b < 0:

⋄ For b∗ < b < 0: system tends to the unique steady state

⋄ For b < b∗ < 0: system tends to a peridiodic solution
(given by the solution initially with a pseudo
equilibrium)

Some of these results can be proved analytically (see later slides)

. – p.78/95



Pseudo equilibria and solutions to NNLIF

delay=10 b=1.5
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Pseudo equilibria and solutions to NNLIF

delay=25 b=-14

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

-10 -8 -6 -4 -2  0  2

p(
v)

v

t=50
t=100
t=150
t=200
t=250
t=300

Low state

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0  50  100  150  200  250  300

N
(t

)

t

b=-9
b=-9.5
b=-12

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0  50  100  150  200  250  300

N
(t

)

t

d=2
d=10
d=25

delay=10 b = −14 . – p.78/95



Pseudo equilibria and solutions to NNLIF

delay=25 b=-14
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Convergence to a steady
state

• Entropy method (quasi-linear case)

• New strategy without restrictions on the connectivity parameter

. – p.79/95



How to overcame |b| small?
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Different techniques
(C-Cañizo-RamosLora, 2024, 2025)

• Systems with large delay.
Under technical assumptions:

If {Nk,∞} → N∞, thus ‖p(., t)− p∞(.)‖X ≤ Qe−µt‖p0 − p∞‖X
for all t ≥ 0, (Q, µ > 0)

Nonlinear system tends through

the pseudo-equilibria sequence to

the limit of the pseudo-equilibria

sequence, which is p∞

Only works for weakly connected networks (small |b|)
Technical difficulties!

Numerical simulations show that this is also true for large b: Global behaviour

C-Cañizo-RamosLora,Phys. Rev. E 110 (2024)

. – p.81/95
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Different techniques
(C-Cañizo-RamosLora, 2024, 2025)

• Systems with large delay.
Under technical assumptions:

If {Nk,∞} → N∞, thus ‖p(., t)− p∞(.)‖X ≤ Qe−µt‖p0 − p∞‖X
for all t ≥ 0, (Q, µ > 0)

Nonlinear system tends through

the pseudo-equilibria sequence to

the limit of the pseudo-equilibria

sequence, which is p∞

Only works for weakly connected networks (small |b|)
Technical difficulties!

Numerical simulations show that this is also true for large b: Global behaviour

C-Cañizo-RamosLora,Phys. Rev. E 110 (2024)

• Local stability through linearization
Works for general connectivity strength with and without delay
Stability/unstability map in terms of b and d (at least numerically)

Even without any delay some connections with firing rate sequences!!

C-Cañizo-RamosLora,Commun. Math. Phys. Vol 406, (2025)
. – p.81/95

https://journals.aps.org/pre/abstract/10.1103/PhysRevE.110.064308
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Different techniques
(C-Cañizo-RamosLora, 2025)

 0

 1

 2

 3

 4

 5

 6

 0  0.5  1  1.5  2  2.5

N

b

Low equilibria
High equilibria

Value of the stationary firing rate (b > 0)

(for b < 0 there is only one equilibrium)

-20 -15 -10 -5  0

b

 0

 5

 10

 15

 20

 25

d

Stability map of the linearized equation,

stability (dark) or instability (white)

. – p.82/95



Summary about the simplest NNLIF
• The sign of the connectivity parameter b describes if the

network is

⋄ average-excitatory (b>0)

⋄ average-inhibitory (b<0)

• Existence of solutions
⋄ Inhibitory case: Global existence

⋄ Excitatory case: Local existence
◦ Blow-up phenomena
◦ If delay transmission is included there is global

existence

• Stationary solutions
⋄ Inhibitory case: A unique steady states

⋄ Excitatory case:
◦ b small a unique steady states
◦ b large non steady states
◦ Intermediate values of b: at least one or at least two

. – p.83/95



Summary about the simplest NNLIF

Pseudo equilibria

• Large-delay NNLIF models can be approximated by a
discrete sequence of pseudo equilibrium sequence

• Quick simulations give accurate information about the
NNLIF system

• Periodic solutions appear for strongly inhibitory systems
with large delay

• For excitatory systems with large delay bistability
phenomenon appears between the steady state with less
firing rate and a plateau distribution

. – p.84/95



Summary about the simplest NNLIF

Two different methods to prove convergence to equilibrium

• Entropy dissipation method:

⋄ |b| small is required to control the term without sign

• Strong norm + spectral gap for linear equations

⋄ New strategy

⋄ Applied without restriction on b

⋄ Surprising link with pseudo equilibria

⋄ Open question Does it work for plateau distributions

and periodic solutions (inhibitory case)?

⋄ It works for other models

Open question How to prove the convergence to periodic

solutions? see works of Roux-Salort and collaborators
. – p.84/95



Extensions of NNLIF

• Refractory state

• Randomness on the discharge potential

• Network consisting of excitatory and inhibitory neurons, as
different populations

• Network consisting of excitatory and inhibitory neurons
with delay and refractory states

• Nonlinear Fokker-Planck including conductance

. – p.85/95



Course summary
• A few mathematical models which describe the activity of

neural networks by means of the membrane potential

⋄ ODE models:
◦ Hodgkin-Huxley model
◦ Morris-Lecar model
◦ FitzHugh-Nagumo model
◦ Integrate-and-fire model

. – p.86/95



Course summary
• A few mathematical models which describe the activity of

neural networks by means of the membrane potential

⋄ ODE models

⋄ PDE models:

◦ Nonlinear Noisy Leaky Integrate and Fire (NNLIF):
ρ(t, v), ρE(t, v), ρI(t, v), RE(t), RI(t)

◦ Nonlinear Fokker-Planck including conductance:
ρ(t, v, g)

◦ Age-structured partial differential equations ρ(t, s)




∂tρ(t, a)+ ∂aρ(t, a)+ S(a,X(t))ρ(t, a) = 0

ρ(t, a = 0) = N(t) ≔
∫ ∞

0
S(a,X(t))ρ(t, a) da t > 0,

ρ(t = 0, a) = ρ0(a) a > 0,
◦ Different past network activity:

· X(t) = JN(t)

· X(t) = JN(t− d)

· X(t) = J
∫ ∞

0
α(s)N(t− s) ds with

∫ ∞
0
α(s) ds = 1 and α(·) ≥ 0

◦ J ≥ 0 is the strength of interconnections

. – p.86/95



Course summary
• A few mathematical models which describe the activity of

neural networks by means of the membrane potential

⋄ ODE models

⋄ PDE models

• Results related with neurophysiological phenomena

• Math issues:

⋄ Steady states

⋄ Local/global existence - Blow-up phenomenon

⋄ Long time behaviour

. – p.86/95



Thank you very much for
your attention

(and for using your neurons for it!)

We keep in touch (caceres@ugr.es)

. – p.87/95
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Blow-up: Proof

We choose φ(v) = eµv with µ > max(
VF
am
, 1

b ), then a weak solution

satisfies

. – p.89/95



Blow-up: Proof

We choose φ(v) = eµv with µ > max(
VF
am
, 1

b ), then a weak solution

satisfies

d

dt

∫ VF

−∞
φ(v)p(v, t) dv ≥ µ

∫ VF

−∞
(bN(t)− v)φ(v)p(v, t) dv

+µ2am

∫ VF

−∞
φ(v)p(v, t) dv+N(t)

(

φ(VR)−φ(VF)
)

. – p.89/95



Blow-up: Proof

We choose φ(v) = eµv with µ > max(
VF
am
, 1

b ), then a weak solution

satisfies

d

dt

∫ VF

−∞
φ(v)p(v, t) dv ≥ µ[bN(t)+ µam −VF

︸    ︷︷    ︸

>0

]

∫ VF

−∞
φ(v)p(v, t) dv

−N(t)φ(VF)

. – p.89/95



Blow-up: Proof

We choose φ(v) = eµv with µ > max(
VF
am
, 1

b ), then a weak solution

satisfies

d

dt

∫ VF

−∞
φ(v)p(v, t) dv

︸                 ︷︷                 ︸

Mµ(t)

≥ µ[bN(t)+ µam −VF
︸    ︷︷    ︸

>0

]

∫ VF

−∞
φ(v)p(v, t) dv

︸                 ︷︷                 ︸

Mµ(t)

−N(t)φ(VF)
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Blow-up: Proof

We choose φ(v) = eµv with µ > max(
VF
am
, 1

b ), then a weak solution

satisfies
d

dt
Mµ(t) ≥ µ[bN(t)+ µam −VF] Mµ(t)

−N(t)φ(VF)
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Blow-up: Proof

We choose φ(v) = eµv with µ > max(
VF
am
, 1

b ), then a weak solution

satisfies
d

dt
Mµ(t) ≥ µ[bN(t)+ µam −VF] Mµ(t)

−N(t)φ(VF)

and by Gronwall’s lemma:

Mµ(t) ≥ eµ
∫ t

0
(bN(s)+µam−VF) ds

(

Mµ(0)−φ(VF)

∫ t

0
N(s)e−µ

∫ s

0
(bN(z)+µam−VF) dz ds

)
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Blow-up: Proof

We choose φ(v) = eµv with µ > max(
VF
am
, 1

b ), then a weak solution

satisfies
d

dt
Mµ(t) ≥ µ[bN(t)+ µam −VF] Mµ(t)

−N(t)φ(VF)

and by Gronwall’s lemma:

Mµ(t) ≥ eµ
∫ t

0
(bN(s)+µam−VF) ds

(

Mµ(0)−
φ(VF)

µb

)
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Blow-up: Proof

We choose φ(v) = eµv with µ > max(
VF
am
, 1

b ), then a weak solution

satisfies

Mµ(t) ≥ Keµ(µam−VF)t with µ(µam −VF) > 0

and K > 0 is we assume the initial data such that

K :=
(

Mµ(0)− φ(VF)
µb

)

> 0

But since p(v, t) is a probability density,
∫ VF

−∞ p(v, t) dv =
∫ VF

−∞ p0(v) dv = 1, and µ > 0 then

Mµ(t) =

∫ VF

−∞
φ(v)p(v, t) dv ≤ eµVF ,

leading to a contradiction

(return)
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Notion of solution

A pair of nonnegative functions (p,N) with

p ∈ L∞
(

IR+; L1
+(−∞,VF)

)

, N ∈ L1
loc,+

(IR+) is a weak solution if for

any test function φ(v, t) ∈ C∞((−∞,VF]× [0,T]) such that
∂2φ

∂v2 ,

v
∂φ
∂v
∈ L∞((−∞,VF)× (0,T)), we have

∫ T

0

∫ VF

−∞
p(v, t)

[

−
∂φ

∂t
−
∂φ

∂v
h(v,N)− a

∂2φ

∂v2

]

dv dt =

∫ T

0
N(t)[φ(VR, t)−φ(VF, t)] dt+

∫ VF

−∞
p0(v)φ(0, v) dv−

∫ VF

−∞
p(v,T)φ(T, v) dv.

(return)
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Notion of solution
• By choosing test functions: ψ(t)φ(v) where

φ(v) ∈ C∞((−∞,VF]), v
∂φ
∂v
,
∂2φ

∂v2 ∈ L∞((−∞,VF)),

d

dt

∫ VF

−∞
φ(v)p(v, t)dv =

∫ VF

−∞

[

∂φ

∂v
h(v,N)+ a

∂2φ

∂v2

]

p(v, t)dv

+N(t)[φ(VR)−φ(VF)]

holds in the distributional sense

• φ ≡ 1 =⇒
∫ VF

−∞ p(v, t) dv =
∫ VF

−∞ p0(v) dv = 1

(return)
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Rewriting as a Stefan like problem
(Rescale the variables, in order to have a = 1 and VF = 0)

First change of variables: (Classical change to transform the linear Fokker-Planck into a

heat equation, see Carrillo-Toscani, Ind. Univ. Math. Jour. (2000))

y = etv, τ =
1

2
(e2t − 1)

Define

w(y, τ) = α(τ)p(yα(τ),− log(α(τ)))

and M(τ) = N(t)α2(τ)
︸                ︷︷                ︸

firing rate in new variables

where α(τ) = (
√

2τ+ 1)−1

Second change of variables:

x = y−
∫ τ

0
µ(t− d)α(s) ds µ(t) := b0 + bN(t)

Define u(x, τ) = w
(

x+
∫ τ

0
µ(t− d)α(s) ds, τ

)

Carrillo-González-Gualdani-Schonbek, Comm. in PDEs, Vol. 38(3), 385-409, (2013) for d = 0
. – p.91/95

https://www.jstor.org/stable/24901033
http://www.ma.utexas.edu/users/gualdani/Pdf/CGGS.pdf


Rewriting as a Stefan like problem

Thus we obtain for τ > 0, x < s(τ):





ut(x, τ) = uxx(x, τ)+M(t)δ(x− s1(τ)),

s1(τ) = s(τ)+
VR
α(τ) ,

s(τ) = −b0(
√

2τ+ 1− 1)− b

∫ τ

0
N(t− d)α(s)dsb

∫ τ

0
N(t− d)α(s)dsb

∫ τ

0
N(t− d)α(s)ds,

M(τ) = −ux(s(τ), τ),

N(t) = N(0), t ∈ (−d, 0],

u(−∞, τ) = u(s(τ), τ) = 0,

u(x, 0) = u0(x), x < 0,

where d > 0 and α(τ) = 1√
2τ+1
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Rewriting as a Stefan like problem

Handling the delay we obtain the equivalent system





ut(x, t) = uxx(x, t)+M(t)δ(x− s1(t)),

s1(t) = s(t)+
VR
α(t) ,

s(t) = −b0(
√

2t+ 1− 1)− b√
1−d̂

∫ (1−d̂)t− 1
2 d̂

− 1
2 d̂

M(s)α−1(s)dsb√
1−d̂

∫ (1−d̂)t− 1
2 d̂

− 1
2 d̂

M(s)α−1(s)dsb√
1−d̂

∫ (1−d̂)t− 1
2 d̂

− 1
2 d̂

M(s)α−1(s)ds,

M(t) = −ux(s(t), t),

M(t) =M(0), t ∈ (−d̂, 0],

u(−∞, t) = u(s(t), t) = 0,

u(x, 0) = u0(x), x < 0,

where d̂ = (1− e−2d) ∈ [0, 1) and α(t) = 1√
2t+1

.

(return)
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Integral formulation

M(t) = −2

∫ 0

−∞
G(s(t), t, ξ, 0)u′0(ξ)dξ

+2

∫ t

0
M(τ)Gx(s(t), t, s(τ), τ)dτ− 2

∫ t

0
M(τ)Gx(s(t), t, s1(τ), τ)dτ,

where G is the Green’s function for the heat equation on the real line

G(x, t, ξ, τ) = 1√
4π(t−τ)

e
− |x−ξ|

2

4(t−τ) and satisfies the Green identity

∂

∂ξ

(

G
∂u

∂ξ
− u

∂G

∂ξ

)

− ∂

∂τ
(Gu) = 0

(return)
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Local existence

With a fixed point argument and the integral formulation of M:

Theorem (C-Roux-Salort-Schneider) [Local existence]
Let u0(x) be a non-negative function in

C0((−∞, 0])∩C1((−∞,VR)∪ (VR, 0])∩ L1((−∞, 0)) such that
u0(0) = 0.
Suppose u0, (u0)x decay to zero as x→ −∞ and that the left and
right derivatives at VR are finite.
Then there exists a time T > 0 such that M(t) defined by the

integral formulation exists for t ∈ [0,T] and is unique in C0([0,T]).
The existence time T satisfies

T ≤
(

sup
x∈(−∞,VR)∪(VR,0]

|u′0(x)|
)−1

.
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Local existence

And as a corollary
There exists a unique solution of the Stefan like problem for
t ∈ [0,T]

Proof. Once M is known the equation for u decouples, and u
can be calculated via the Duhamel’s formula

u(x, t) =

∫ VR

−∞
G(x, t, ξ, 0)u0(ξ) dξ+

∫ 0

VR

G(x, t, ξ, 0)u0(ξ) dξ

−
∫ t

0
M(τ)G(x, t, s(τ)τ) dτ+

∫ t

0
M(τ)G(x, t, s1(τ)τ) dτ.

Finally, the local existence theorem is translated into the NNLIF
equation, since ρ and N are recovered undoing the changes of
variables

(return)
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Super solution

Let T ∈ IR+, d ≥ 0 (ρ̄,N̄) is said to be a (classical) super solution

to the delayed NNLIF model on (−∞,VF]× [0,T] if for all
t ∈ [0,T] we have ρ̄(VF, t) = 0 and

∂tρ̄+ ∂v[(−v+ bN̄(t− d))ρ̄]− a∂vvρ̄ ≥ δv=VR
N̄(t),

N̄(t) = −a∂vρ̄(VF, t),

on (−∞,VF]× [0,T] in the distributional sense and on ((−∞,VF] \

VR) × [0,T] in the classical sense, with arbitrary values for N̄ on

[−d, 0)
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Super solution

Let T ∈ IR+, d ≥ 0 (ρ̄,N̄) is said to be a (classical) super solution

to the delayed NNLIF model on (−∞,VF]× [0,T] if for all
t ∈ [0,T] we have ρ̄(VF, t) = 0 and

∂tρ̄+ ∂v[(−v+ bN̄(t− d))ρ̄]− a∂vvρ̄ ≥ δv=VR
N̄(t),

N̄(t) = −a∂vρ̄(VF, t),

on (−∞,VF]× [0,T] in the distributional sense and on
((−∞,VF] \VR)× [0,T] in the classical sense, with arbitrary

values for N̄ on [−d, 0)

We consider super solution ρ̄ on [0, d] of the form

ρ̄(v, t) = eξt f (v),

whereξ is large enough and f is a carefully selected function.
. – p.94/95



Super solution

Comparison principle
Let (p,N) be a solution of the NNLIF model on (−∞,VF]× [0,T]

for the initial condition (p0,N0) and (p̄, N̄) be a super-solution

(−∞,VF]× [0,T]. Assume that ∀ v ∈ (−∞,VF], p̄(v, 0) ≥ p0(v) and

∀t ∈ [−d, 0), N̄(t) = N0(t). Then

∀(v, t) ∈ (−∞,VF]× [0,T], p̄(v, t) ≥ p(v, t) and N̄(t) ≥ N(t)

And we find a contradiction if we assume that the firing rate
explodes in a finite time

(return)
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